COMPUTER PROGRAMMING UNIT-I

CONTENTS

Introduction to Computers –

1.1 Computer Systems

1.2 Computing Environments

1.3 Computer Languages

1.4 Creating and running programs

1.5 Program Development

1.6 Algorithms and flowcharts

1.7 Number systems-Binary, Decimal, Hexadecimal and Conversions

1.8 Storing integers and real numbers.

 Introduction to C Language –

1.9 Background, C Programs

1.10 Identifiers, Types, Variables, Constants

1.11 Input / Output, Operators(Arithmetic, relational, logical, bitwise etc.)

1.12 Expressions, Precedence and Associativity, Expression Evaluation

1.13 Type conversions

1.14 Statements- Selection Statements(making decisions) – if and switch statements

1.15 Repetition statements (loops)-while, for, do-while statements

 Loop example . other statements related to looping –

1.16 break, continue, goto, Simple C Program examples.

Introduction to Computers:
1.1 Computer Systems:
A computer is a system made of two major components: hardware and software. The computer hardware is the physical equipment. The software is the collection of programs (instructions) that allow the hardware to do its job.
[image: image24.jpg]

[image: image25.jpg]

[image: image26.jpg]

[image: image27.jpg]

[image: image28.jpg]

[image: image29.jpg]

[image: image30.jpg]

[image: image31.jpg]

[image: image32.jpg]

 Computer

 System

	 Hardware
	
	 Software

	
	
	

Computer Hardware
The hardware component of the computer system consists of five parts: input devices, central processing unit (CPU) ,primary storage, output devices, and auxiliary storage devices.

[image: image1.png]Montor

Input Devices

Basic Hardware Components

[image: image33.jpg]

[image: image34.jpg]

The input device is usually a keyboard where programs and data are entered into the computers. Examples of other input devices include a mouse, a pen or stylus, a touch screen, or an audio input unit.
The central processing unit (CPU) is responsible for executing instructions such as arithmetic calculations,comparisons among data, and movement of data inside the system. Today’s computers may have one ,two, or more CPUs .Primary storage ,also known as main memory, is a place where the programs and data are stored temporarily during processing. The data in primary storage are erased when we turn off a personal computer or when we log off from a time-sharing system.

The output device is usually a monitor or a printer to show output. If the output is shown on the monitor, we say we have a soft copy. If it is printed on the printer, we say we have a hard copy.

Auxiliary storage, also known as secondary storage , is used for both input and output. It is the place where the programs and data are stored permanently. When we turn off the computer, or programs and data remain in the secondary storage, ready for the next time we need them.

Computer Software
Computer software is divided in to two broad categories: system software and application software .System software manages the computer resources .It provides the interface between the hardware and the users. Application software, on the other hand is directly responsible for helping users solve their problems.

 Software

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	System
	
	
	
	
	
	
	
	
	Application
	
	
	

	
	
	
	
	software
	
	
	
	
	
	
	
	
	software
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	 System
	
	 System
	
	 General
	
	
	 Application
	

	Operating
	
	
	
	
	
	
	
	
	
	

	
	
	support
	
	Development
	
	 Purpose
	
	
	 Specific
	

	Systems
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

System Software:
System software consists of programs that manage the hardware resources of a computer and perform required information processing tasks. These programs are divided into three classes: the operating system, system support, and system development.
The operating system provides services such as a user interface, file and database access, and interfaces to communication systems such as Internet protocols. The primary purpose of this software is to keep the system operating in an efficient manner while allowing the users access to the system.
System support software provides system utilities and other operating services. Examples of system utilities are sort programs and disk format programs. Operating services consists of programs that provide performance statistics for the operational staff and security monitors to protect the system and data.
The last system software category ,system development software, includes the language translators that convert programs into machine language for execution ,debugging tools to ensure that the programs are error free and computer –assisted software engineering(CASE) systems.
 Application software
 Application software is broken in to two classes :general-purpose software and application – specific software. General purpose software is purchased from a software developer and can be used for more than one application. Examples of general purpose software include word processors ,database management systems ,and computer design systems. They are labeled general purpose because they can solve a variety of user computing problems.
Application –specific software can be used only for its intended purpose.
A general ledger system used by accountants and a material requirements planning system used by a manufacturing organization are examples of application-specific software. They can be used only for the task for which they were designed they cannot be used for other generalized tasks.
The relation ship between system and application software is shown in fig-2.In this figure, each circle represents an interface point .The inner core is hard ware. The user is represented by the out layer. To work with the system,the typical user uses some form of application software. The application software in turn interacts with the operating system ,which is apart of the system software layer. The system software provides the direct interaction with the hard ware. The opening at the bottom of the figure is the path followed by the user who interacts directly with the operating system when necessary.
[image: image35.jpg]

[image: image36.jpg]

1.2 Computing Environments:
In the early days of computers, there was only one environment: the main frame computer hidden in a central computing department. With the advent of mini computers and personal computers, the environment changed, resulting in computers on virtually every desktop.

Personal Computing Environment
In 1971,Marcian E.Hoff, working for Intel, combined the basic elements of the central processing unit into the microprocessor. The first computer on a chip was the Intel 4004 and was the grandparent many times removed of Intel’s current system. If we are using a personal computer, all of the computer hardware components are tied together in our personal computer(PC).
[image: image37.jpg]

Time-Sharing Environment
Employees in large companies often work in what is known as a time-sharing environment. In the times-sharing environment, many users are connected to one or more computers. These computers may be minicomputers or central mainframes. The terminals they use are often nonprogrammable, although today we see more and more microcomputers being used to simulate terminals. Also, in the time-sharing environment, the output devices and auxiliary storage devices are shared by all of the users. A typical college lab in which a minicomputer is shared is shared by many students is shown in figure :

[image: image2.png]a.’” X
e S Y

& ‘Shared Printers

Time-sharing Environment

In the time- sharing environment ,all computing must be done by the central computer. The central computer has many duties: It must control the shared resources; it must manage the shared data and printing and it must do the computing.

Client/Server Environment
A client/server computing environment splits the computing function between a central computer and users’ computers. The users are given personal computers or work stations so that some of the computation responsibility can be moved from the central computer and assigned to the workstations. In the client-server environment, the users’ micro computers or workstations are called the client. The central computer, which may be a powerful microcomputer, minicomputer, or central mainframe system, is known as the server. Because the work is now shared between the users’ computers and the central computer, response time and monitor display are faster and the users are more productive.
[image: image3.png]Server

Shared Prnters
oriral Storage

a 2232

Gl

‘The Client/Server Environment

Distributed Computing
A Distributed Computing environment provides a seamless integration of computing functions between different servers and clients .The internet provides connectivity to different servers throughout the world. For example eBay uses several computers to provide its auction services. This environment provides a reliable, scalable, and highly available network.
Fig: Distributed Computing
[image: image38.jpg]

1.3 Computer Languages:
To write a program for a computer, we must use a computer language. Over the years computer languages have evolved from machine languages to natural languages.

	1940’s
	Machine level Languages

	1950’s
	Symbolic Languages

	1960’s
	High-Level Languages

Machine Languages
In the earliest days of computers, the only programming languages available were machine languages. Each computer has its own machine language, which is made of streams of 0’s and 1’s.

Instructions in machine language must be in streams of 0’s and 1’s because the internal circuits of a computer are made of switches transistors and other electronic devices that can be in one of two states: off or on. The off state is represented by 0 , the on state is represented by 1.

The only language understood by computer hardware is machine language.

Symbolic Languages:
In early 1950’s Admiral Grace Hopper, A mathematician and naval officer developed the concept of a special computer program that would convert programs into machine language. The early programming languages simply mirror to the machine languages using symbols of mnemonics to represent the various machine language instructions because they used symbols, these languages were known as symbolic languages.
Computer does not understand symbolic language it must be translated to the machine language. A special program called assembler translates symbolic code into machine language. Because symbolic languages had to be assembled into machine language they soon became known as assembly languages.
Symbolic language uses symbols or mnemonics to represent the various ,machine language instructions.
High Level Languages:
Symbolic languages greatly improved programming effificiency; they still required programmers to concentrate on the hardware that they were using. Working with symbolic languages was also very tedious because each machine instruction has to be individually coded. The desire to improve programmer efficiency and to change the focus from the computer to the problem being solved led to the development of high-level language.
High level languages are portable to many different computers, allowing the programmer to concentrate on the application problem at hand rather than the intricacies of the computer. High-level languages are designed to relieve the programmer from the details of the assembly language. High level languages share one thing with symbolic languages, They must be converted into machine language. The process of converting them is known as compilation.
The first widely used high-level languages, FORTRAN (FORmula TRANslation)was created by John Backus and an IBM team in 1957;it is still widely used today in scientific and engineering applications. After FORTRAN was COBOL(Common Business-Oriented Language). Admiral Hopper was played a key role in the development of the COBOL Business language.
C is a high-level language used for system software and new application code.
1.4 Creating and Running Programs:
Computer hardware understands a program only if it is coded in its machine language. It is the job of the programmer to write and test the program .There are four steps in this process:1.Writing and Editing the program2.Compiliing the program 3.Linking the program with the required library modules 4.Executing the program.
[image: image4.png]| Compier

Ubrary

i

IE

ooonmo 10108 Executable

Building a C Program

Writing and Editing Programs
The software used to write programs is known as a text editor. A text editor helps us enter, change, and store character data. Depending on the editor on our system, we could use it to write letters, create reports, or write programs. The main difference between text processing and program writing is that programs are written using lines of code, while most text processing is done with character and lines.

Text editor is a generalized word processor, but it is more often a special editor included with the compiler. Some of the features of the editor are search commands to locate and replace statements, copy and paste commands to copy or move statements from one part of a program to another, and formatting commands that allow us to set tabs to align statements.

After completing a program, we save our file to disk. This file will be input to the compiler; it is known as a source file.
Compiling Programs:
The code in a source file stored on the disk must be translated into machine language ,This is the job of the compiler. The c compiler is two separate programs. the preprocessor and the translator.
The preprocessor reads the source code and prepares it for the translator. While preparing the code ,it scans for special instructions known as preprocessor commands. These commands tell the preprocessor to look for special code libraries, make substitutions in the code ,and in other ways prepare the code for translation into machine language. The result of preprocessing is called the translation unit.
After the preprocessor has prepared the code for compilation, the translator does the actual work of converting the program into machine language. The translator reads the translation unit and writes the resulting object module to a file that can then be combined with other precompiled units to form the final program. An object module is the code in machine language. The output of the compiler is machine language code, but it is not ready to run; that is ,it is not executable because it does not have the required C and other functions included.
Linking Programs:
A C program is made up of many functions. We write some of these functions, and they are a part of our source program. There are other functions, such as input/output processes and, mathematical library functions, that exist elsewhere and must be attached to our program. The linker assembles all of these functions, ours and systems into our final executable program.
Executing Programs:
Once program has been linked, it is ready for execution. To execute a program we use an operating system command, such as run, to load the program into primary memory and execute it. Getting the program into memory is the function of an operating system program known as the loader. It locates the executable program and reads it into memory. When everything is loaded, the program takes control and it begins execution.
In a typical program execution, the reads data for processing ,either from the user or from a file. After the program processes the data, it prepares the output. at output can be to the
user’s monitor or to a file. When the program has finished its job, it tells the operating system ,which then removes the program from memory.
1.5 Program development System Development Method
A software development process is a structure imposed on the development of a software product. This critical process determines the overall quality and success of our
program. If we carefully design each program using good structured development techniques, programs will be efficient, error-free, and easy to maintain.
System Development Life Cycle
Today’s large-scale modern programming projects are built using a series of interrelates phases commonly referred to as the system development cycle. Although the exact number and names of the phases differ depending on the environment there is general agreement as to the steps that must be followed. One very popular development life cycle developed, this modal consists of between 5 and 7 phases.
[image: image39.jpg]

 Systems
[image: image40.jpg]

 Requirements
[image: image41.jpg]

 Analysis
[image: image42.jpg]

 Design
[image: image43.jpg]

 Code
[image: image44.jpg]

 System Test
[image: image45.jpg]

 Maintenance
The water fall modal starts with systems requirements in this phase the systems analyst defines requirements that specify what the proposed system is to accomplish.

The requirements are usually stated in terms that the user understands.

The analysis phase looks at different alternatives from a systems point of view while the design phase determined how the system will be built.
In the design phase the functions of the individual programs that will make up the system are determined and the design of the files and / or the databases is completed.

Finally in the 4th phase code, we write the programs. After the programs have been written and tested to the programmer’s satisfaction, the project proceeds to the system test.

All of the programs are tested together to make sure of the system works as a whole

The final phase maintenance keeps the system working once it has been put into production.
Although the implication of the water falls approach is that the phases flow in a continuous stream from the first to the last, this is not really the case. As each phase is developed, errors and omissions will often be found in the previous work. When this happens it is necessary to go back to the previous phase to rework it for consistency and to analyze the impact caused by the changes.
1.6 ALGORITHM /PSEUDOCODE:
PSEUDOCODE:
Pseudo code is an artificial and informal language that helps programmers develop algorithams.pseudocode is similar to everyday English, it is convenient and user friendly although it is not an actual computer programming language. Psuedocode programs are not actually executed on computer rather they merely help the programmer “think out” a program before attempting to write it in a programming language such as C.
ALGORITHM:
Algorithms was developed by an Arab mathematician. It is chalked out step-by-step approach to solve a given problem. It is represented in an English like language and has some mathematical symbols like ->, >, <, = etc. To solve a given problem or to write a program you approach towards solution of the problem in a systematic, disciplined, non-adhoc, step-by-step way is called Algorithmic approach. Algorithm is a penned strategy(to write) to find a solution.
Example: Algorithm/pseudo code to add two numbers
Step 1: Start
Step 2:Read the two numbers in to a,b
Step 3: c=a+b
Step 4: write/print c
Step 5: Stop.
FLOW CHART :
A Flow chart is a Graphical representation of an Algorithm or a portion of an Algorithm. Flow charts are drawn using certain special purpose symbols such as Rectangles, Diamonds, Ovals and small circles. These symbols are connected by arrows called flow lines.
(or)
The diagrammatic representation of way to solve the given problem is called flow
chart.
The following are the most common symbols used in Drawing flowcharts:
[image: image5.png]Oval

Parallclogram

Document

tangle

Diamond

J 0

Terminal

Input/output

Print O ut.

Decision

starys in/end.

Mzking data available
For processing(input)
or recording of the
‘Pprocess

information(output).

show data outputin
the fom of

document.

Any processing tobe
Dome A process
changes o moves
dataAn assignment
operation.

Decision or switching.
type of operations.

[image: image6.png]Cirdle) Comnector Used to connect
Different parts of

flowchart.

Arow _— Flow Toins two symbols
@i also represents

flow of exccution.

PROGRAM DEVELOPMENT STEPS :
Program Development is a multistep process that requires that we understand the problem, develop a solution, write the program, and then test it. When we are given the assignment to develop a program, we will be given a program requirements statement and the design of any program interfaces. We should also receive an overview of the complete project so that we will take the inputs we are given and convert them to the outputs that have been specified. This is known as program design.
Understand the Problem
The first step in solving any problem is to understand it. By reading the requirements statements carefully, we fully understand it, we review our understanding with the user and the systems analyst to know the exact purpose.
Develop the solution
Once we fully understand the problem we need to develop our solution. Three tools will help in this task. 1. Structure chart, 2.Psuedocode &3.Flowcharts. Generally we will use structure chart and either flowchart or Pseudo code
The structure chart is used to design the whole program .Pseudo code and flowcharts are used to design the individual parts of the program.
Structure chart: A structure chart, also known as hierarchy chart, shows the functional flow through our program. The structure chart shows how we are going to break our program into logical steps each step will be a separate module. The structure chart shows the interaction between all the parts (modules) of our program.
We can use flowchart or pseudo code to complete the design of your program will depend on experience and difficulty of the program your designing.
Write the program
When we write a program, we start with the top box on the structure chart and work our way to the bottom. This is known as top-down implementation. We will write the programs by using structure chart and flowchart or pseudo code.
Test the Program
Program testing can be a very tedious and time- consuming part of program development. As the programmer we are responsible for completely testing our program. In large-development projects test engineers are responsible for testing to make sure all the programs work together.

NUMBER SYSTEM

Number systems are the technique to represent numbers in the computer system architecture, every value that you are saving or getting into/from computer memory has a defined number system.

Computer architecture supports following number systems.

Binary number system
Octal number system
Decimal number system
Hexadecimal (hex) number system
1) Binary Number System

A Binary number system has only two digits that are 0 and 1. Every number (value) represents with 0 and 1 in this number system. The base of binary number system is 2, because it has only two digits.

2) Octal number system

Octal number system has only eight (8) digits from 0 to 7. Every number (value) represents with 0,1,2,3,4,5,6 and 7 in this number system. The base of octal number system is 8, because it has only 8 digits.

3) Decimal number system

Decimal number system has only ten (10) digits from 0 to 9. Every number (value) represents with 0,1,2,3,4,5,6, 7,8 and 9 in this number system. The base of decimal number system is 10, because it has only 10 digits.

4) Hexadecimal number system

A Hexadecimal number system has sixteen (16) alphanumeric values from 0 to 9 and A to F. Every number (value) represents with 0,1,2,3,4,5,6, 7,8,9,A,B,C,D,E and F in this number system. The base of hexadecimal number system is 16, because it has 16 alphanumeric values. Here A is 10, B is 11, C is 12, D is 13, E is 14and F is 15.

CONVERSIONS:

BINARY SYSTEM :

Binary to decimal conversion

Binary to octal conversion

Binary to hexadecimal conversion

Here is an example of converting binary directly into decimal. We simply add up the place values of each 1 digit in the binary number.

Binary to decimal conversion

	1001012 = 3710:

Exponents

25
24
23
22
21
 20

Place Values

32

16

8

4

2

 1

Bits

1

0

0

1

0

 1

Value

32

+

4

+ 1

=

37

Binary to octal conversion

Step 1:Take the given binary number

Step 2:Multiply each digit by 2n-1 where n is the position of the digit from the decimal.If it is a decimal number multiply the each digit in the decimal part by [image: image7.png]

 ,m is the position of the digit from the decimal point

Step 3:The resultant is the equivalent decimal number for the given binary number.

Step 4: Divide the decimal with 8

Step 5: Note the remainder

Step 6: Continue the above two steps with the quotient till the quotient is zero

Step 7: Write the remainder in the reverse order

Step 8: The resultant is the required octal number for the given binary number.

Question: Convert 10101012 to octal
Solution:
Given binary number is 10101012
First we convert given binary to decimal

10101012 = (1 * 26) + (0 * 25) + (1 * 24) + (0 * 23) + (1 * 22) + (0 * 21) + (1 * 20)

= 64 + 0 + 16 + 0 + 4 + 0 + 1

= 64 + 21

= 85 (Decimal form)

Now we will convert this decimal to octal form

8 | 85

8 | 10 -- 5

8 | 1 -- 2

8 | 0 --1

 10101012 equivalent octal form is 1258.

	28
27
26
25
24
23
22
21
20
Place Values

256

128

64

32

16

8

4

2

1

Bits

1

1

1

1

0

1

0

0

0

Value

256

+

128

+

64

+

32

+

8

=

488

Exponents

27
26
25
24
23
22
21
20
Place Values

128

64

32

16

8

4

2

1

Bits

1

0

1

1

0

1

0

1

Value

128

+

32

+

16

+

4

+

1

=

181

Binary to hexadecimal conversion

Step 1: The given number is in binary from.

Step 2: First, we have to change the binary number into decimal number.
Step 3: Then, we count the number of binary digits in the given number. Let there be n numbers.

Step 4: Then, we multiply each digit with 2n-1, when n is equal to number of position from right side.

Step 5: Add all numbers after multiplication.

Step 6: Now, the binary number is in decimal number.

Step 7: Now, convert decimal to hexadecimal. If the decimal number is less than sixteen, it will be converted by above table.

Step 8: If decimal number is greater than sixteen, it should be divided by 16.

Step 9: Remainder must be less than 16. (It will be converted by table).

Step 10: Then, we write quotient first and then hexadecimal form of remainder together.

Step 11: The resultant is in hexadecimal form of given binary number.

Question 1: Convert 01011011 in hexadecimal number.
Solution:
The given binary number is 01011011

Now, we convert it first to decimal number

So, 01011011 =(0 ×× 277) + (1 ×× 266) + (0 ×× 255) + (1 ×× 244) + (1 ×× 233) + (0 ×× 222) + (1 ×× 211) + (1 ×× 200)

= (0 ×× 128) + (1 ×× 64) + (0 ×× 32) + (1 ×× 16) + (1 ×× 8) + (0 ×× 4) + (1 ×× 2) + (1 ×× 1)

= 0 + 64 + 0 + 16 + 8 + 0 + 2 + 1

= 91 (decimal form of binary number)

Now, we have to change it into hexadecimal number. So, 91 is greater than 16. So, we have to divide by 16.

After dividing by 16, quotient is 5 and remainder is 11.

Remainder is less than 16.

Hexadecimal number of remainder is B.

Quotient is 5 and hexadecimal number of remainder is B.

So, 5B is the hexadecimal number equivalent to decimal number 91.

OCTAL SYSTEM

Octal to Binary conversion

Step 1: Consider the given octal number

Step 2: Let the given number have n number of digits

Step 3: Multiply each digit of the number with 8n-1, when the digit is in the nth position from the right end of the number.If the number has decimal part the multiply each digit in the decimal part by [image: image8.png]

 when the digit is in the mth position from the decimal point.
Step 4: Add all terms after multiplication

Step 5: The obtained value is the equivalent decimal number

Step 6: Consider the decimal number, divide it by 2

Step 7: Note the remainder

Step 8: Continue the above two steps for the quotient till the quotient is zero

Step 9: Write the remainders in the reverse order

Step 10: The obtained number is the equivalent binary number for the given octal number.

Question 1: Convert 418 to a binary number.
Solution:

Given number is 418

418 = (4 * 81) + (1 * 80)

= 4 * 8 + 1 * 1

= 32+1

= 33(Decimal number)

Now convert this decimal number to a binary number.

2 | 33
2 | 16 -- 1
2 | 8 -- 0
2 | 4 --0
2 | 2 -- 0
 1 -- 0

The binary number is 1000012

418 = 1000012

Octal to Decimal conversion

Step 1:Take the given octal number.

Step 2: Find out the number of digits in the number

Step 3: Let it have n digits.

Step 4: Multiply each digit in the number with 8n-1,when the digit is in the nth position.

Step 5: Add all digits after multiplication.

Step 6: The resultant is the equivalent decimal to the given octal number.

If octal number contains a decimal point

Step 7: Let m digits are there after the decimal

Step 8: Multiply each digit after decimal with[image: image9.png]

 ,when the digit is the mth position.

All other steps are same as above.

Example: Convert 57468 to decimal number
Solution:

The given number is 57468

57468 = (5 * 83)+ (7 * 82) + (4 * 81) + (6 * 80)

=5 * 512 + 7 * 64 + 4 * 8 + 6 * 1

= 2560+448+32+6

= 3046

The equivalent decimal number for 57468 is 3046

57468 = 3046

Octal to hexadecimal conversion

Step 1: Let the number of digits in the number be n

Step 2: Multiply the digits with 8n-1where n is position of digit from the right end of the number.If the number has decimalpart the multiply digits after decimal by [image: image10.png]

 where m is position of the number from the decimal

Step 3: Add the terms after multiplication

Step 4: The obtained number is equivalent decimal number to the given octal

Step 5: Consider the decimal number,divide it by 16

Step 6: Note the remainder.

Step 7: Continue the process till the quotient in zero

Step 8: Write the remainder in the reverse order

Step 9: The obtained number is equivalent hexadecimal number to the given octadecimal number.

Example: Convert 10028 to hexadecimal
Solution:

The given number is 10028

10028 = (1 * 83)+ (0 * 82) + (0 * 81) + (2 * 80)

=1 * 512 + 0 * 64 + 0 * 8 + 2 * 1

= 512 + 0 + 0+ 2

= 514(decimal number)

Now we convert the above decimal to hexadecimal

16 | 514
16 | 32 --2
 2 -- 0

The hexadecimal number is 202

10028 = 20216

DECIMAL SYSTEM

Decimal to Binary conversion

Step 1: Divide given number starting from 2 as suitable.

Step 2: Write remainder on the right side of quotient.

Step 3: Divide untill quotient will be 0.

Step 4: Now write binary number starting from lower end of that divison.

Step 5: Now write given number including quotient of lower end that should be starting point.

Example:Convert 35 into binary number.
Solution:
The binary number can be calculated by using L division method

2 | 35

2 | 17 -- 1

2 | 8 -- 1

2 | 4 --0

2 | 2 -- 0

1 -- 0

 answer is (100011)2.

Decimal to octal conversion

Step 1: Take the given decimal number

Step 2: If the number is less than 8 the octal number is the same

Step 3: If the number is greater than 7 then Divide the number with 8

Step 4: Note the remainder

Step 5: Carry on the step 3 and 4 with the qoutient till it is less than 8

Step 6: Write the remainders in reverse order(bottom to top)

Step 7: The resultant is the equivalent octal number to the given decimal number

Question 1: Convert 128 to octal form.
Solution:
Given decimal number is 128

Start the division process

8 | 128
8 | 16 -- 0
8 | 2 -- 0
8 | 0 –2

 answer is The equivalent octal number for 128 is (200)8.

Decimal to Hexadecimal conversion

Step 1: 0 to 15 we can covert directly by the table.

Step 2: For other numbers. Divide the decimal number by 16.

Step 3: Remainder will always be less than 16.

Step 4: Quotient will write first

Step 5: Convert remainder by the help of table.

Step 6: After Quotient we will write the hexadecimal number of remainder.

Example: Convert 146 to hexadecimal number?

Solution:
146 is greater than 16 , so we have to divide by 16.

After dividing by 16 , quotient is 9 and remainder is 2.

remainder is less than 16.

the hexadecimal number of remainder is 2.

Quotient is 9 and hexadecimal number of remainder is 2.

so, the 92 is the hexadecimal number is equivalent to decimal number 146.

 16 | 146

 16 | 9 -- 2

 0 – 9

HEXADECIMAL CONVERSIONS
Hexadecimal to Binary conversion

Step 1: Take given hexadecimal number

Step 2: Find the number of digits in the decimal

Step 3: If it has n digits,multiply each digit with 2n-1where the digit is in the nth position

Step 4: Add the terms after multiplication

Step 5: The resultant is the decimal number equivalent to the given hexadecimal number.Now we have to convert this hexadecimal to binary number.

Step 6: Divide the decimal number with 2

Step 7: Note the remainder

Step 8: Do the above 2 steps for the quotient till the quotient is zero

Step 9: Write the remainders in the reverse order.

Step 10: The resultant is the required binary number.

Example: Convert A2B16 to a equivalent binary number

Solution:

Given hexadecimal number is A2B

A2B16 = (A * 162) + (2 * 161) + (B * 160)
= (A * 256) + (2 * 16) + (B * 1)

= (10 *256) + 32 + 11

= 2560 + 43

= 2603(Decimal number)

Now we have to convert 2603 to binary

2 | 2603
2 |1301 -- 1
2 | 650 -- 1
2 | 325 -- 0
2 | 162 -- 1
2 | 81 -- 0
2 | 40 -- 1
2 | 20 -- 0
2 | 10 -- 0
2 | 5 -- 0
2 | 2 -- 1
2 | 1 -- 0
2 | 0 -- 1

The binary number is 1010001010112

A2B16 = 1010001010112

Hexadecimal to octal conversion

Step 1: Consider the given hexadecimal number

Step 2: First count the number of digits in the number

Step 3: If n is the position of the digit from the right end then multiply each digit with 16n-1
Step 4: Add the terms after multiplication

Step 5: Resultant is the equivalent decimal form

Step 6: Divide the decimal number with 8

Step 7: Note down the remainder

Step 8:Continue step 6 and 7 with the quotient, until the quotient is zero

Step 9: Write the remainders in reverse order

Step 10: The obtained number is the required result

Example : Find the equivalent octal form of C116

Solution:
 Given hexadecimal number is C1

C116 = (C * 161) + (1 * 160)

= C * 16 + 1 * 1

=12 * 16 + 1

= 192 + 1

=193 (Decimal form)

Now we have to convert this decimal to octal

8 | 193
8 | 24 -- 1
8 | 3 -- 0
8 | 0 --3

The octal number is 3018

C116 = 3018

Hexadecimal to Decimal conversion

Step 1: First we find the number of hexadecimal digits in the number. Let there be n numbers.

Step 2: Then we multiply each hexadecimal digit with 16n−116n−1, when n is equal to number of position from right side.

Step 3: Then we add each number after multiplication.

Step 4: The resultant is equivalent hexadecimal number of the given decimal number.

Example : Convert 7B16 into decimal number.
Solution:
 Given hexadecimal number is 7B1616.
7B1616 = 1611 ×× 7 + 1600 ×× B

= 16 ×× 7 + 1 ×× B

= 112 + 1 ×× 11

= 112 + 11

= 123

Answer is 123

Computer Memory & Data Representation

Computer uses a fixed number of bits to represent a piece of data, which could be a number, a character, or others. A n-bit storage location can represent up to 2^n distinct entities. For example, a 3-bit memory location can hold one of these eight binary patterns: 000, 001, 010, 011, 100, 101, 110, or 111. Hence, it can represent at most 8 distinct entities. You could use them to represent numbers 0 to 7, numbers 8881 to 8888, characters 'A' to 'H', or up to 8 kinds of fruits like apple, orange, banana; or up to 8 kinds of animals like lion, tiger, etc.

Integers, for example, can be represented in 8-bit, 16-bit, 32-bit or 64-bit. You, as the programmer, choose an appropriate bit-length for your integers. Your choice will impose constraint on the range of integers that can be represented. Besides the bit-length, an integer can be represented in various representation schemes, e.g., unsigned vs. signed integers. An 8-bit unsigned integer has a range of 0 to 255, while an 8-bit signed integer has a range of -128 to 127 - both representing 256 distinct numbers.

It is important to note that a computer memory location merely stores a binary pattern. It is entirely up to you, as the programmer, to decide on how these patterns are to be interpreted. For example, the 8-bit binary pattern "0100 0001B" can be interpreted as an unsigned integer 65, or an ASCII character 'A', or some secret information known only to you. In other words, you have to first decide how to represent a piece of data in a binary pattern before the binary patterns make sense. The interpretation of binary pattern is called data representation or encoding. Furthermore, it is important that the data representation schemes are agreed-upon by all the parties, i.e., industrial standards need to be formulated and straightly followed.

Once you decided on the data representation scheme, certain constraints, in particular, the precision and range will be imposed. Hence, it is important to understand data representation to write correct and high-performance programs.

Integer Representation

Integers are whole numbers or fixed-point numbers with the radix point fixed after the least-significant bit. They are contrast to real numbers or floating-point numbers, where the position of the radix point varies. It is important to take note that integers and floating-point numbers are treated differently in computers. They have different representation and are processed differently (e.g., floating-point numbers are processed in a so-called floating-point processor). Floating-point numbers will be discussed later.

Computers use a fixed number of bits to represent an integer. The commonly-used bit-lengths for integers are 8-bit, 16-bit, 32-bit or 64-bit. Besides bit-lengths, there are two representation schemes for integers:

Unsigned Integers: can represent zero and positive integers.

Signed Integers: can represent zero, positive and negative integers. Three representation schemes had been proposed for signed integers:

Sign-Magnitude representation

1's Complement representation

2's Complement representation

You, as the programmer, need to decide on the bit-length and representation scheme for your integers, depending on your application's requirements. Suppose that you need a counter for counting a small quantity from 0 up to 200, you might choose the 8-bit unsigned integer scheme as there is no negative numbers involved.

 Floating-Point Number Representation

A floating-point number (or real number) can represent a very large (1.23×10^88) or a very small (1.23×10^-88) value. It could also represent very large negative number (-1.23×10^88) and very small negative number (-1.23×10^88), as well as zero, as illustrated:

A floating-point number is typically expressed in the scientific notation, with a fraction (F), and an exponent (E) of a certain radix (r), in the form of F×r^E. Decimal numbers use radix of 10 (F×10^E); while binary numbers use radix of 2 (F×2^E).

Representation of floating point number is not unique. For example, the number 55.66 can be represented as 5.566×10^1, 0.5566×10^2, 0.05566×10^3, and so on. The fractional part can be normalized. In the normalized form, there is only a single non-zero digit before the radix point. For example, decimal number 123.4567 can be normalized as 1.234567×10^2; binary number 1010.1011B can be normalized as 1.0101011B×2^3.

It is important to note that floating-point numbers suffer from loss of precision when represented with a fixed number of bits (e.g., 32-bit or 64-bit). This is because there are infinite number of real numbers (even within a small range of says 0.0 to 0.1). On the other hand, a n-bit binary pattern can represent a finite 2^n distinct numbers. Hence, not all the real numbers can be represented. The nearest approximation will be used instead, resulted in loss of accuracy.

It is also important to note that floating number arithmetic is very much less efficient than integer arithmetic. It could be speed up with a so-called dedicated floating-point co-processor. Hence, use integers if your application does not require floating-point numbers.

In computers, floating-point numbers are represented in scientific notation of fraction (F) and exponent (E) with a radix of 2, in the form of F×2^E. Both E and F can be positive as well as negative. Modern computers adopt IEEE 754 standard for representing floating-point numbers. There are two representation schemes: 32-bit single-precision and 64-bit double-precision.

4.1 IEEE-754 32-bit Single-Precision Floating-Point Numbers

In 32-bit single-precision floating-point representation:

The most significant bit is the sign bit (S), with 0 for positive numbers and 1 for negative numbers.

The following 8 bits represent exponent (E).

The remaining 23 bits represents fraction (F).

[image: image11.png]3130 2322

s

Exponent (E) Fraction (F)

- -
8 23

32-bit Single-Precision Floating-point Number

IMPORTANT QUESTIONS

1. What is a flowchart? Explain the different symbols used in a flowchart.

2.(a) Define an Algorithm?
(b) What is the use of Flowchart?

(c) What are the different steps followed in the program development?

3. Explain the different computing environments?

4. Explain the steps for the creation and running c program?

5. Draw a flow chart to find the biggest among three numbers?

INTRODUCTION TO ‘C’ LANGUAGE:
1.9 BACK GROUND OF C:

C language facilitates a very efficient approach to the development and implementation of computer programs. The History of C started in 1972 at the Bell Laboratories, USA where Dennis M. Ritchie proposed this language. In 1983 the American National Standards Institute (ANSI) established committee whose goal was to produce “an unambiguous and machine independent definition of the language C “ while still retaining it’s spirit .
C is the programming language most frequently associated with UNIX. Since the 1970s, the bulk of the UNIX operating system and its applications have been written in C. Because the C language does not directly rely on any specific hardware architecture, UNIX was one of the first portable operating systems. In other words, the majority of the code that makes up UNIX does not know and does not care which computer it is actually running on. Machine-specific features are isolated in a few modules within the UNIX kernel, which makes it easy for you to modify them when you are porting to a different hardware architecture.
C was first designed by Dennis Ritchie for use with UNIX on DEC PDP-11 computers. The language evolved from Martin Richard's BCPL, and one of its earlier forms was the B language, which was written by Ken Thompson for the DEC PDP-7. The first book on C was The C Programming Language by Brian Kernighan and Dennis Ritchie, published in 1978.
In 1983, the American National Standards Institute (ANSI) established a committee to standardize the definition of C. The resulting standard is known as ANSI C, and it is the recognized standard for the language, grammar, and a core set of libraries. The syntax is slightly different from the original C language, which is frequently called K&R for Kernighan and Ritchie. There is also an ISO (International Standards Organization) standard that is very similar to the ANSI standard.
It appears that there will be yet another ANSI C standard officially dated 1999 or in the early 2000 years; it is currently known as "C9X."
BASIC STRUCTURE OF C LANGUAGE :
 The program written in C language follows this basic structure. The sequence of sections should be as they are in the basic structure. A C program should have one or more sections but the sequence of sections is to be followed.
Documentation section

Linking section

Definition section

Global declaration section

Main function section

{
Declaration section Executable section
}
Sub program or function section

DOCUMENTATION SECTION : comes first and is used to document the use of logic or reasons in your program. It can be used to write the program's objective,
developer and logic details. The documentation is done in C language with /* and */ . Whatever is written between these two are called comments.
LINKING SECTION : This section tells the compiler to link the certain occurrences of keywords or functions in your program to the header files specified in this section.
e.g. #include <stdio.h>
DEFINITION SECTION : It is used to declare some constants and assign them some value.
e.g. #define MAX 25
Here #define is a compiler directive which tells the compiler whenever MAX is found in the program replace it with 25.
GLOBAL DECLARATION SECTION : Here the variables which are used through out the program (including main and other functions) are declared so as to make them global(i.e accessible to all parts of program)
e.g. int i; (before main())

MAIN FUNCTION SECTION : It tells the compiler where to start the execution from
main()
{
point from execution starts
}
main function has two sections
declaration section : In this the variables and their data types are declared.

Executable section : This has the part of program which actually performs the task we need.

SUB PROGRAM OR FUNCTION SECTION : This has all the sub programs or the functions which our program needs.
SIMPLE ‘C’ PROGRAM:
/* simple program in c */ #include<stdio.h> main()
{
printf(“welcome to c programming”); } /* End of main */
1.10 C-TOKENS :
Tokens are individual words and punctuations marks in English language sentence. The smallest individual units are known as C tokens.
	
	
	OPERATORS
	E.g. +, -, *
	

	
	
	
	
	

	
	
	
	E.g. [], { }
	

	
	
	
	
	

	
	
	SPECIAL SYMBOLS
	
	

	
	
	
	
	

	
	
	
	E.g. “asifia”
	

	
	
	
	
	

	
	
	STRINGS
	
	

	 C
	
	
	E.g. -15.4, ‘a’, 200
	

	
	
	
	
	

	
	
	
	
	

	TOKENS
	
	
	
	

	
	
	CONSTANTS
	
	

	
	
	
	
	

	
	
	
	E.g. rate,no_of_hours
	

	
	
	
	
	

	
	
	IDENTIFIERS
	
	

	
	
	
	E.g. int, printf
	

	
	
	KEY WORDS
	
	

	
	
	
	
	

[image: image46.jpg]

A C program can be divided into these tokens. A C program contains minimum 3 c tokens no matter what the size of the program is.

DATA TYPES :
To represent different types of data in C program we need different data types. A data type is essential to identify the storage representation and the type of operations that can be performed on that data. C supports four different classes of data types namely
Basic Data types

Derives data types

User defined data types

Pointer data types

BASIC DATA TYPES:
All arithmetic operations such as Addition , subtraction etc are possible on basic data types.
E.g.: int a,b;
Char c;
The following table shows the Storage size and Range of basic data types:
	TYPE
	LENGTH
	RANGE

	Unsigned char
	8 bits
	0 to 255

	Char
	8 bits
	-128 to 127

	Short int
	16 bits
	-32768 to 32767

	Unsigned int
	32 bits
	0 to 4,294,967,295

	Int
	32 bits
	-2,147,483,648 to 2,147,483,648

	Unsigned long
	32 bits
	0 to 4,294,967,295

	Enum
	16 bits
	-2,147,483,648 to 2,147,483,648

	Long
	32 bits
	-2,147,483,648 to 2,147,483,648

	Float
	32 bits
	3.4*10E-38 to 3.4*10E38

	Double
	64 bits
	1.7*10E-308 to 1.7*10E308

	Long double
	80 bits
	3.4*10E-4932 to 1.1*10E4932

DERIVED DATA TYPES:
Derived datatypes are used in ‘C’ to store a set of data values. Arrays and Structures are examples for derived data types.
Ex: int a[10];
Char name[20];
USER DEFINED DATATYPES:
C Provides a facility called typedef for creating new data type names defined by the user. For Example ,the declaration ,
typedef int Integer;
makes the name Integer a synonym of int.Now the type Integer can be used in declarations ,casts,etc,like,
Integer num1,num2;
Which will be treated by the C compiler as the declaration of num1,num2as int variables. “typedef” ia more useful with structures and pointers.
POINTER DATA TYPES:
Pointer data type is necessary to store the address of a variable.
VARIABLES :
A quantity that can vary during the execution of a program is known as a variable. To identify a quantity we name the variable for example if we are calculating a sum of two numbers we will name the variable that will hold the value of sum of two numbers as 'sum'.
IDENTIFIERS :
Names of the variables and other program elements such as functions, array,etc,are known as identifiers.
There are few rules that govern the way variable are named(identifiers).
Identifiers can be named from the combination of A-Z, a-z, 0-9, _(Underscore).

The first alphabet of the identifier should be either an alphabet or an underscore. digit are not allowed.

 It should not be a keyword. Eg: name,ptr,sum After naming a variable we need to declare it to compiler of what data type it is . The format of declaring a variable is

 Data-type id1, id2,.....idn; where data type could be float, int, char or any of the data id1, id2, id3 are the names of variable we use. In case of single variable no commas are required.

 eg
float a, b, c;

 Int e, f, grand total;

 char present_or_absent;

ASSIGNING VALUES :
When we name and declare variables we need to assign value to the variable. In some cases we assign value to the variable directly like
a=10;

in our program
In some cases we need to assign values to variable after the user has given input for that.
eg we ask user to enter any no and input it.
/* write a program to show assigning of values to variables */
#include<stdio.h>
main()
{
int a; float b;
printf("Enter any number\n"); b=190.5;
scanf("%d",&a); printf("user entered %d", a); printf("B's values is %f", b);
}
CONSTANTS :
A quantity that does not vary during the execution of a program is known as a constant supports two types of constants namely Numeric constants and character constants.

NUMERIC CONSTANTS:
Example for an integer constant is 786,-127

Long constant is written with a terminal ‘l’or ‘L’,for example 1234567899L is a Long constant.

Unsigned constants are written with a terminal ‘u’ or ‘U’,and the suffix ‘ul’ and ‘UL’ indicates unsigned long. for example 123456789u is a Unsigned constant and 1234567891ul is an unsigned long constant.

The advantage of declaring an unsigned constant is to increase the range of storage.

Floating point constants contain a decimal point or an exponent or both. For Eg : 123.4,1e-2,1.4E-4,etc.The suffixes f or F indicate a float constant while the absence of f or F indicate the double, l or L indicate long double.

CHARACTER CONSTANTS:
A character constant is written as one character with in single quotes such as ‘a’. The value of a character constant is the numerical value of the character in the machines character set. certain character constants can be represented by escape sequences like ‘\n’. These sequences look like two characters but represent only one.
The following are the some of the examples of escape sequences:
Escape sequence
Description
\a
Alert
\b
Backspace
\f
Form feed
\n
New Line
\r
Carriage return
\t
Horizontal Tab
\v
Vertical Tab
String constants or string literal is a sequence of zero or more characters surrounded by a double quote. Example , “ I am a little boy”. quotes are not a part of the string.
To distinguish between a character constant and a string that contains a single character ex: ‘a’ is not same as “a”. ‘a’ is an integer used to produce the numeric value of letter a in the machine character set, while “a” is an array of characters containing one character and a ‘\0’ as a string in C is an array of characters terminated by NULL.
There is one another kind of constant i.e Enumeration constant , it is a list of constant integer values.
1.11 OPERATORS :
An operator is a symbol that tells the compiler to perform certain mathematical or logical manipulations. They form expressions.
C operators can be classified as
Arithmetic operators

Relational operators

Logical operators

Assignment operators

Increment or Decrement operators

Conditional operator

Bit wise operators

Special operators

ARITHMETIC OPERATORS : All basic arithmetic operators are present in C.

operator
meaning
+
add
-
subtract
*
multiplication
/
division
%
modulo division(remainder)
An arithmetic operation involving only real operands(or integer operands) is
called real arithmetic(or integer arithmetic). If a combination of arithmetic and real is called mixed mode arithmetic.
2. RELATIONAL OPERATORS : We often compare two quantities and depending on their relation take certain decisions for that comparison we use relational operators.
operator
meaning
<
is less than
>
is greater than
<=
is less than or equal to
>=
is greater than or equal to
is equal to

!=
is not equal to
3. LOGICAL OPERATORS : An expression of this kind which combines two or more relational expressions is termed as a logical expressions or a compound relational expression. The operators and truth values are
	op-1
	op-2
	op-1 && op-2 op-1 || op-2

	non-zero
	non-zero
	1
	1

	non-zero
	0
	0
	1

	0
	non-zero
	0
	1

	0
	0
	0
	0

	op-1
	!op-1
	
	

	non-zero
	zero
	
	

	zero
	non-zero
	
	

5. ASSIGNMENT OPERATORS : They are used to assign the result of an expression to a variable. The assignment operator is '='.
op=exp is variable

op binary operator exp expression
op= short hand assignment operator
short hand assignment operators
use of simple assignment operators use of short hand assignment operators
a=a+1
a+=1
a=a-1
a-=1
a=a%b
a%=b
INCREMENT AND DECREMENT OPERATORS :

and == are called increment and decrement operators used to add or subtract. Both are unary and as follows

++m or m++ --m or m--
The difference between ++m and m++ is
if m=5; y=++m then it is equal to m=5;m++;y=m; if m=5; y=m++ then it is equal to m=5;y=m;m++;
7. CONDITIONAL OPERATOR : A ternary operator pair "?:" is available in C to construct conditional expressions of the form
exp1 ? exp2 : exp3;
It work as
if exp1 is true then exp2 else exp3
8. BIT WISE OPERATORS : C supports special operators known as bit wise operators for manipulation of data at bit level. They are not applied to float or double.
operator
meaning
Bitwise AND

|
Bitwise OR
^
Bitwise exclusive OR
left shift

right shift

~
one's complement
9. SPECIAL OPERATORS : These operators which do not fit in any of the above classification are ,(comma), sizeof, Pointer operators(& and *) and member selection operators (. and ->). The comma operator is used to link related expressions together.
sizeof operator is used to know the sizeof operand.
/* programs to exhibit the use of operators */
#include<stdio.h>
main()
{
int sum, mul, modu; float sub, divi;
int i,j; float l, m;
printf("Enter two integers "); scanf("%d%d",&i,&j); printf("Enter two real numbers"); scanf("%f%f",&l,&m); sum=i+j;
mul=i*j;
modu=i%j; sub=l-m; divi=l/m;
printf("sum is %d", sum); printf("mul is %d", mul); printf("Remainder is %d", modu);
printf("subtraction of float is %f", sub); printf("division of float is %f", divi);
}
/* program to implement relational and logical */
#include<stdio.h>
main()
{
int i, j, k;
printf("Enter any three numbers "); scanf("%d%d%d", &i, &j, &k); if((i<j)&&(j<k))
printf("k is largest"); else if i<j || j>k
{
if i<j && j >k
printf("j is largest");
else
printf("j is not largest of all");
}
}

/* program to implement increment and decrement operators */
#include<stdio.h>
main()
{
int i;
printf("Enter a number"); scanf("%d", &i);
i++;
printf("after incrementing %d ", i); i--;
printf("after decrement %d", i);
}
/* program using ternary operator and assignment */ #include<stdio.h>
main()
{
int i,j,large;
printf("Enter two numbers "); scanf("%d%d",&i,&j); large=(i>j)?i:j;
printf("largest of two is %d",large);
}
1.12 EXPRESSIONS :
An expression is a sequence of operands and operators that reduces to a single value. Expression can be simple or complex. An operator is a syntactical token that requires an action be taken. An operand is an object on which an operation is performed.
A simple expression contains only one operator.E.g: 2 + 3 is a simple expression whose value is 5.A complex expression contains more that one operator. E.g: 2 + 3 * 2. To evaluate a complex expression we reduce it to a series of simple expressions. In this first we will evaluate the simple expression 3 * 2 (6)and then the expression 2 + 6,giving a result of 8.
The order in which the operators in a complex expression are evaluated is determined by a set of priorities known as precedence, the higher the precedence ,the earlier the expression containing the operator is evaluated. If two operators with the same precedence occur in a complex expression ,another attribute of an operator ,its associativety ,takes control.Associativity is the parsing direction used to evaluate the expression. It can be either left-to-right or right-to-left .When two operators with the same precedence occur in an expression and their associativity is left-to-right ,the left
operator is evaluated first. For example ,in the expression 3*4/6 ,there are two operators multiplication and division ,with the same precedence and left-to-right associativity
.Therefore the multiplication is evaluated before the division .
The following table shows the precedence and associativity of operators:
[image: image47.jpg]

1.12 ARITHMETIC EXPRESSIONS :
It is a combination of variables, constants and operators arranged according to the syntax of C language.
Some examples A * B – C
(M + N) * (X + Y)
Evaluation of expressions : Expressions are evaluated using an assignment statement of the form
Variable = expression
Eg x = x*y + z-3 *(z *y)
Precedence of arithmetic expressions is used to evaluate a expression to provide un ambiguous way of solving an expression. The highest precedence operator is evaluated then next highest precedence operator until no operator is present.
The precedence or priorities are as follows High * / %
Low
+ -
An expression is evaluated in left to right and value is assigned to variable in left side of assignment operator.
/* program to demonstrate evaluation of expressions */ #include<stdio.h>
main()
{
float a,b,c,x,y,z; a=9;b=23;c=3; x=a-b/3+c*2-1; y=a-b/(3+c)*(2-1); z=a-(b/(3+c)*2)-1;
printf("values of x,y,z are %d%d%d",x,y,z);
}
TYPE CONVERSION:
In an expression that involves two different data types ,such as multiplying an integer and a floating point number to perform these evaluations ,one of the types must be converted.
We have two types of conversions
1.Implicit Type Conversion 2.Explicit Type Conversion
IMPLICIT TYPE CONVERSION :
When the types of the two operands in a binary expression are different automatically converts one type to another .This is known as implicit type conversion .
EXPLICIT TYPE CONVERSION :
Explicit type conversion uses the unary cast operator ,to convert data from one type to another. To cast data from one type to another ,we specify the new type in parentheses before the value we want converted.
For example ,to convert an integer ,a , to a float, we code the expression like (float) a
INPUT AND OUTPUT STATEMENTS :
The simplest of input operator is getchar to read a single character from the input
device.
varname=getchar(); you need to declare varname.
The simplest of output operator is putchar to output a single character on the output device.
putchar(varname)
The getchar() is used only for one input and is not formatted. Formatted input refers to an input data that has been arranged in a particular format, for that we have scanf.
scanf("control string", arg1, arg2,...argn);
Control string specifies field format in which data is to be entered.
arg1, arg2... argn specifies address of location or variable where data is stored.
eg scanf("%d%d",&a,&b);
%d used for integers
%f
floats
%l
long
%c
character
for formatted output you use printf printf("control string", arg1, arg2,...argn);
/* program to exhibit i/o */ #include<stdio.h>
main()
{
int a,b; float c;
printf("Enter any number"); a=getchar();
printf("the char is "); putchar(a);
printf("Exhibiting the use of scanf");
printf("Enter three numbers"); scanf("%d%d%f",&a,&b,&c); printf("%d%d%f",a,b,c);
}
1.14 STATEMENTS AND BLOCKS :
A statement causes an action to be performed by the program. It translates directly in to one or more executable computer instructions.
STATEMENT TYPES:
1.NULL STATEMENT :
The null statement is just a semicolon (the terminator).
Eg:
//null statement
Although they do not arise often, there are syntactical situations where we must have a statement but no action is required .In these situations we use the null statement.
2.EXPRESSION STATEMENT :
An expression is turned in to a statement by placing a semicolon(;)after it.
expression;
//expression statement
Eg: a=2;
3.RETURN STATEMENT :
A return statement terminates a function. All functions ,including main, must have a return statement. Where there is no return statement at the end of the function ,the system inserts one with a void return value.
return expression;
//return statement
The return statement can return a value to the calling function. In case of main ,it returns a value to the operating system rather than to another function. A return value of zero tells the operating system that the program executed successfully.
4.COMPOUND STATEMENTS:
A compound statement is a unit of code consisting of zero or more statements .It is also known as a block. The compound statement allows a group of statements to become one single entity.
A compound statement consists of an opening brace ,an optional declaration and definition section ,and an optional statement section ,followed by a closing brace.
Eg:
{
//Local Declarations int x;
int y; int z;
//Statements
x=1;
y=2;
…
} //End BlocK

IF AND SWITCH STATEMENTS :
We have a number of situations where we may have to change the order of execution of statements based on certain conditions or repeat a group of statements until certain specified conditions are met.
The if statement is a two way decision statement and is used in conjunction with an expression. It takes the following form
If(test expression)
If the test expression is true then the statement block after if is executed otherwise it is not executed
if (test expression)
{
statement block;
}
statement–x ;
only statement–x is executed.
/* program for if */ #include<stdio.h> main()
{
int a,b;
printf(“Enter two numbers”); scanf(“%d%d”,&a,&b):
if a>b
printf(“ a is greater”);
if b>a
printf(“b is greater”);
}
The if –else statement:
If your have another set of statement to be executed if condition is false then if-else is used
if (test expression)
{
statement block1;
}
else
{
statement block2;
}
statement –x ;
/* program for if-else */
#include<stdio.h>
main()
{
int a,b;
printf(“Enter two numbers”); scanf(“%d%d”,&a,&b):
if a>b
printf(“ a is greater”)
else
printf(“b is greater”);
}
Nesting of if..else statement :
If more than one if else statement if(text cond1)
{
if (test expression2
{
statement block1;
}
else
{
statement block 2;
}
}
else
{
statement block2;
}
statement-x ;
if else ladder
if(condition1)
statement1; else if(condition2) statement 2; else if(condition3) statement n;
else
default statement. statement-x;
The nesting of if-else depends upon the conditions with which we have to deal.

THE SWITCH STATEMENT :
If for suppose we have more than one valid choices to choose from then we can use switch statement in place of if statements.
switch(expression)
{.
case value-1
block- 1 break;
case value-2
block- 2 break;

default:
default block; break; }
statement–x
In case of if(cond1)
{
statement-1
}
if (cond2)
{
statement 2
}

/* program to implement switch */ #include<stdio.h>
main()
{
int marks,index; char grade[10];
printf(“Enter your marks”); scanf(“%d”,&marks); index=marks/10; switch(index)
{
case 10 : case 9: case 8: case 7:
case 6: grade=”first”; break;
case 5 : grade=”second”; break;
case 4 : grade=”third”; break;
default : grade =”fail”; break;
}
printf(“%s”,grade);
}

1.15 LOOPING :
Some times we require a set of statements to be executed repeatedly until a condition is met.
We have two types of looping structures. One in which condition is tested before entering the statement block called entry control.
The other in which condition is checked at exit called exit controlled loop.
WHILE STATEMENT :
While(test condition)
{
body of the loop
}
It is an entry controlled loop. The condition is evaluated and if it is true then body of loop is executed. After execution of body the condition is once again evaluated and if is true body is executed once again. This goes on until test condition becomes false.
/* program for while */ #include<stdio.h> main()
{
int count,n; float x,y;
printf(“Enter the values of x and n”); scanf(“%f%d”,&x,&n);
y=1.0;
count=1;
while(count<=n)
{
y=y*x;
count++;
}
printf(“x=%f; n=%d; x to power n = %f”,x,n,y);
}
DO WHILE STATEMENT :
The while loop does not allow body to be executed if test condition is false. The do while is an exit controlled loop and its body is executed at least once.
do
{
body }while(test condition);
/* printing multiplication table */
#include<stdio.h> #define COL 10 #define ROW 12 main()
{
int row,col,y; row=1;
do
{
col=1; do
{
y=row*col;
printf(“%d”,y);
col=col+1;
}while(col<=COL);
printf(“\n”);
row=row+1;
}while(row<=ROW);
}
THE FOR LOOP :
It is also an entry control loop that provides a more concise structure
for(initialization; test control; increment)
{
body of loop
}
/* program of for loop */ #include<stdio.h> main()
{
long int p; int n; double q;
printf(“2 to power n “); p=1; for(n=0;n<21;++n)
{
if(n==0)
p=1;
else
p=p*2;
q=1.0/(double)p;
printf(“%101d%10d”,p,n);
}
}
1.16 BREAK STATEMENT:
This is a simple statement. It only makes sense if it occurs in the body of a switch, do, while or for statement. When it is executed the control of flow jumps to the statement immediately following the body of the statement containing the break. Its use is widespread in switch statements, where it is more or less essential to get the control .
The use of the break within loops is of dubious legitimacy. It has its moments, but is really only justifiable when exceptional circumstances have happened and the loop has to be abandoned. It would be nice if more than one loop could be abandoned with a single break but that isn't how it works. Here is an example.
#include <stdio.h> #include <stdlib.h> main(){
int i;
for(i = 0; i < 10000; i++){ if(getchar() == 's') break;
printf("%d\n", i);
}
exit(EXIT_SUCCESS);
}

It reads a single character from the program's input before printing the next in a sequence of numbers. If an ‘s’ is typed, the break causes an exit from the loop.
If you want to exit from more than one level of loop, the break is the wrong thing to use.
CONTINUE STATEMENT:
This statement has only a limited number of uses. The rules for its use are the same as for break, with the exception that it doesn't apply to switch statements. Executing a continue starts the next iteration of the smallest enclosing do, while or for statement immediately. The use of continue is largely restricted to the top of loops, where a decision has to be made whether or not to execute the rest of the body of the loop. In this example it ensures that division by zero (which gives undefined behaviour) doesn't happen.
#include <stdio.h> #include <stdlib.h> main(){
int i;
for(i = -10; i < 10; i++){ if(i == 0)
continue; printf("%f\n", 15.0/i); /*
* Lots of other statements
*/
}
exit(EXIT_SUCCESS);
}
The continue can be used in other parts of a loop, too, where it may occasionally help to simplify the logic of the code and improve readability. continue has no special meaning to a switch statement, where break does have. Inside a switch, continue is only valid if there is a loop that encloses the switch, in which case the next iteration of the loop will be started.
There is an important difference between loops written with while and for. In a while, a continue will go immediately to the test of the controlling expression. The same thing in a for will do two things: first the update expression is evaluated, then the controlling expression is evaluated.
 GOTO AND LABELS:
In C, it is used to escape from multiple nested loops, or to go to an error handling exit at the end of a function. You will need a label when you use a goto; this example shows both.
goto L1;
/* whatever you like here */ L1: /* anything else */
A label is an identifier followed by a colon. Labels have their own ‘name space’ so they can't clash with the names of variables or functions. The name space only exists for the function containing the label, so label names can be re-used in different functions. The label can be used before it is declared, too, simply by mentioning it in a goto statement.
Labels must be part of a full statement, even if it's an empty one. This usually only matters when you're trying to put a label at the end of a compound statement—like this.
label_at_end: ; /* empty statement */
}
The goto works in an obvious way, jumping to the labelled statements. Because the name of the label is only visible inside its own function, you can't jump from one function to another one.
It's hard to give rigid rules about the use of gotos but, as with the do, continue and the break (except in switch statements), over-use should be avoided. More than one goto every 3–5 functions is a symptom that should be viewed with deep suspicion.

IMPORTANT QUESTIONS UNIT - I
1. Write the various steps involved in executing a C program and illustrate with the help of flow chart?

2. What is the difference between break and continue statements ? Explain with examples.

3. What is the purpose of goto statement? How is the associated target statement identified?

4.(a) What are constants?

(b) Name the different data types that C supports and explain them in detail.

5. (a) What is meant by looping? Describe any two different forms of looping with Examples.
(b) Write a program to print the following outputs using for loop.

i) 1

2 2

3 3 3

4 4 4 4

	ii)
	
	1
	

	
	2
	2
	

	
	3
	3
	3

	4
	4
	4
	4

6. What are the logical operators used in C and illustrate with examples?

7. Whar is the purpose of switch statement ? How does this statement differ from the other statements?
UNIT – II

Content:

· Functions-

· Designing Structured Programs

· Functions, user defined functions, inter function communication

· Standard functions

· Scope, Storage classes-auto, register, static, extern, scoperules

· type qualifiers

· Recursion- recursive functions, Limitations of recursion, example C programs.

· Arrays – Concepts, using arrays in C

· inter function communication

· array applications- linear search, binary search and bubble sort

· two – dimensional arrays, multidimensional arrays, C program examples

FUNCTIONS
[image: image48.jpg]

A function is a self contained program segment that carries out a specific, well-defined task.

Every c program can be thought of as a collection of these functions. A large problem has to be split into smaller segments so that it can be efficiently solved. This is where, functions come into the picture. They are actually the smaller segments, which help solve the large problems.

The C language supports two types of functions:

1. Library Functions

2. User defined Functions

The library functions are pre-defined set of functions. Their task is limited. A user cannot understand the internal working of these functions. The user can only use the functions but can‟t change or modify them.

Ex: sqrt(81) gives result 9. Here the user need not worry about its source code, but the result should be provided by the function.

The User defined functions are totally different. The functions defined by the user according to his requirement are called as User defined functions. The user can modify the function according to the requirement. The user certainly understands the internal working of the function. The user has full scope to implement his own ideas in the function. Thus the set of such user defined functions can be useful to another programmer. One should include the file in which the user-defined functions are stored to call the functions in the program.

Ex: Let square(9) is user-defined function which gives the result 81.

Here the user knows the internal working of the square() function, as its source code is visible. This is the major difference between the two types of functions.

Why we use functions?
1. If we want to perform a task repetitively then it is not necessary to re-write the particular block of the program again and again. Shift the particular block of statements in a user-defined function. The function defined can be used for any number of times to perform the task.

Suppose a section of code in a program calculates the simple interest for some specified amount, time and rate of interest. Consider a scenario, wherein later on in the same program the same calculation has to be done for a different amount, rate and time. Functions come to rescue here. Rather than writing the same instructions all over again, a function can be written to calculate the simple interest for any specified amount, time and rate. The program control is then transferred to the function, the calculations are performed and the control is transferred back to the place from where it was transferred.

2. Using functions large programs can be reduced to smaller ones.

	
	

3. It is easy to debug and find out the errors in it. It also increases readability.

4. Programs containing functions are also easier to maintain, because modifications, if required, can be confined to certain functions within the program. In addition to this program, functions can be put in a library of related functions and used by many programs, thus saving on coding time.

5. Facilitates top-down modular programming. In this programming style, the high level of the overall program is solved first while the details of each lower level functions are addressed later.

Elements of user-defined functions:
We know that functions are classified as one of the derived data types in C. So, we can define functions and use them like any other variable in C programs. Therefore we can observe the following similarities between the functions and variables in C.

1. Both function names and variable names are considered as identifiers.

2. Like variables, functions also have types (data types) associated with them.

3. Like variables, function names and their types must be declared and defined before they are used in a program.

In order to make use of a user-defined function, we need to establish three elements that are related to functions.

1. Function definition

2. Function call

3. Function declaration

Function definition (Function Implementation):
It is an independent program module that is specifically written to implement the requirements of the function. It includes the following elements:

Function type, function name, list of parameters (arguments), local variable declarations, body of the functions (list of statements), and a return statement.

All the six elements are grouped into two parts, namely,

1. Function header (First three elements)

2. Function body (Last three statements)

The function structure: The general syntax of a function in C is:

[image: image49.jpg]

type_specifier function_name (arguments)
{
local variable declaration;
statement-1;
statement-2;
....................
return (value);
}
The type_specifier specifies the data type of the value, which the function will return. If no data type is specified, the function is assumed to return an integer result. The arguments are separated by commas. A function is not returning anything; then we need to specify the return type as void. A pair of empty parentheses must follow the function name if the function definition does not include any arguments.

The parameters list / arguments list declares the variables that will receive the data sent by the calling program. They serve as input data to the function o carry out the specific task.

Types of parameters:
1. Actual parameters: The arguments of calling functions are called as actual parameters.

2. Formal parameters: The arguments of called functions are called as formal parameters.

Note:
A semicolon is not used at the end of the function header.

The body of the function may consist of one or many statements necessary for performing the required task. The body consist of three parts:

1. Local variable declaration

2. Function statements that perform the task of the function

3. A return statement that returns the value evaluated by the function. If a function is not returning any value then we can omit the return statement.

Function call:
A compiler executes the function when a semi-colon is followed by function name. A function can be called simply by using its name like other C statement, terminated by semicolon.

A function can be called any number of times. A function can be called from other function, but a function cannot be defined in another function. We can call main () function from other functions.

EX: 1. /* program to call main function from another user defined function*/ void main()

{

message();

}

void message ()

{

printf(“\n welcome to C lab”);

main();

}

EX:2 /*Program on functions*/
void main ()

{

printf(“\n I am in main”);

india ()

{

printf(“\n i am in india”);

}
}

Here the above program code would be wrong. Since india () is defined in main () function.

	
	

EX:3 /* Program to show how user defined function is called */ void main()

{

int x=1,y=2,z;

z=add (x,y);

printf(“z=%d”,z);

}

add (a,b)

{

return (a+b);

}

In the above program values of x, y (actual parameters) are passed to function add (). Formal arguments „a‟ and „b‟ receive the values. The called function add () calculates the addition of both the variables and returns the result. The result is collected by the variable „z‟ of main () which is printed through the printf () statement.

Note:
1. If the actual parameters are more than the formal parameters, the extra actual arguments will be discarded.

2. On the other hand, if the actual arguments are less than the formals, the unmatched formal arguments will be initialized to some garbage.

3. Any match in data types may also result in some garbage values.

4. The user-defined function can call only those user-defined functions which are defined before it.

Return values and their types:
The value evaluated by any function is send back to the calling function by using return statement. The called function can only return only one value per call. The return statement has the following forms:

1. return;

2. return(expression);

The first form does not return any value to the calling function; it acts as the closing brace of the function. When a return is encountered, the control is immediately passed back to the calling function.

A function may have more than one return statement. This situation arises when the value returned is based on certain conditions:

EX:
if(a>b)

return(1);

else

return(0);

Note:
1. All functions by default return integer type data. But, we can force a function to return a particular type of data by using a type specifier in the function header as discussed earlier.

2. Absence of return statement in called function indicates that no value is returned to the calling function, such functions are called as void.

	
	

How function works?
1. Once a function is defined and called, it takes some data from the calling function and returns a value to the called function.

2. Whenever a function is called, control passes to the called function and working of the calling function is stopped. When the execution of the called function is completed, control returns back to the calling function and execute the next statement.

3. The values of actual arguments passed by the calling function are received by the formal arguments of the called function. The number of actual and formal arguments should be the same.

Extra arguments are discarded if they are defined. If the formal arguments are more than the actual arguments then the extra arguments appear as garbage. Any mismatch in data type will produce the unexpected result.

4. The function operates on formal arguments and sends back the result to the calling function. The return () statement performs this task.

Characteristics of functions:
Depending upon the arguments present, return value send the result back to the calling function. Based on this, the functions are divided into 4 types:

1. Without arguments and return values.
2. Without arguments and but with return values.
3. With arguments but without return values.
4. With arguments and return values.
Without arguments and return values
	Calling function
	Analysis
	Called function

	main()
	
	

	{
	
	add ()

	
	{

	

	add ();
	No arguments are passed.

	

	No values are sent back 

	}
	
	}

[image: image50.jpg]

1. In this type neither the data is passed through the calling function nor is the data sent back from the called function.

2. There is no data transfer between calling function and called function.

3. If the functions are used to perform any operations, they act independently. They read data values and print result in the same block.

4. This type of functions may be useful to print some messages, draw a line or split the line etc.

Ex: /* program to display message using user-defined function*/ void main ()

{

void message ();
/*FUNCTION PROTOTYPE*/
message ();
/*FUNCTION CALL*/
}

void message ()
/*FUNCTION DEFINITION*/
{

printf(“Have a nice day”);
}

Explanation: This program contains a user-defined function named message (). It requires no arguments and returns nothing. It displays only a message when called.

Without arguments and but with return values:
/* program to receive values from the user defined function without passing any value

through main ()*/
void main()

{

int z;

z=add ();
/* FUNCTION CALL*/
print(“sum = %d”,z);

}

add ()
/* FUNCTION DEFINITION*/
{

int a=2, b=3, y;

y=a+b;

return (y);

}

	Calling function
	Analysis
	Called function

	main()
	
	add ()

	{
	
	{

	int z;
	
	int a=2,b=3,y;

	z=add();
	No arguments are passed.
	y=a+b;

	printf(“sum = %d”,z);
	No values are sent back 
	return(y);

	}
	
	}

In this type of function no arguments are passed through the main () function (calling function). But the called function (add ()) returns the values. Here the called function is independent. It re data from the keyboard or generates form the initialization and returns the values. In this type both the calling function and called function are partly communicated with each other.

With arguments but without return values
In this type of functions arguments are passed to the calling function. The called function operates on the values. But no result is sent back. This called function is also partly dependent on the calling function. The result obtained is utilized in the called function only.

Ex: /* program to calculate sum of two numbers using user-defined function*/ void main ()

{

void add (int, int); /* FUNCTION PROTOTYPE */
int a, b;
add (int x,int y) /* FUN DEFINITION*/
clrscr();
{

printf(“enter the values of a and b”);
int z; /*Local variable declaration*/
scanf(“%d%d”, &a,&b);
z = x+y;

add(a,b);
/* FUNCTION CALL */
printf(“sum = %d”,z);

getch();
}

}

Explanation: in this program two values are passed to add () function. The add () function receives argument from main () and displays sum of a and b. But it returns nothing.

	Calling function
	Analysis
	Called function

	void main()
	
	

	{
	
	add (int x, int y)

	int a,b;
	
	{

	printf(“enter the value of a & b”);
	
	int z; //Local variable

	scanf(“%d %d”, &a, &b);
	
	z = x + y;

	add (a,b);
	Arguments are passed.
	printf(“ sum = %d”,z);

	}
	No values are sent back 
	

	
	
	}

With arguments and return values:
In this type of functions a copy of actual argument is passed to the formal argument from the calling function to the called function. Called function operates on those data values and it will return the result to the calling function. Here data is transferred between calling and called functions.

Ex: /* program to calculate sum of two numbers using user-defined function */ void main()

	{
	
	
	
	

	void add(int, int);
	/*Function prototype declaration */
	

	int a, b, z;
	
	
	

	clrscr();
	
	
	

	printf(“enter the values of a and b”);
	

	scanf(“%d %d”, &a, &b);
	
	

	z=add (a,b); /* Function CALL*/
	

	printf(“sum = %d”, z);
	
	

	getch();
	
	
	

	}
	
	
	
	

	add (int x, int y)
	/* Function Definition */
	

	{
	
	
	
	

	return (x+y);
	
	
	

	}
	
	
	
	

	
	Calling function
	Analysis
	Called function

	
	void main()
	
	
	

	
	{
	
	
	

	
	int a, b, z;
	
	
	

	
	printf(“enter the value of a &
	
	

	
	b”);
	
	
	add (int x, int y)

	
	scanf(“%d %d”, &a, &b);
	
	{

	
	z = add (a,b);
	
	Arguments are passed.
	

	
	printf(“ sum = %d”, z);
	values are send back 
	return (x + y);

	
	getch();
	
	
	

	
	}
	
	
	}

	Local variables & Global variables:-
	

	These are two types of variables.
	
	

	a) Local Variables
	
	

	
	
	

[image: image51.jpg]

b)

b) Global Variables.

a) Local Variables:-

The variables declared inside a function are known as local variables. The values of these variables cannot be accessed by any other function.
Example:-
void sum (int a, int b)

{

int z;
//local variable
z=a+b;

return (z);

}

Here z is a Local Variable which is declared in the function sum. So, the value of z is restricted to the function sum.

Example Program:-
void main()

{

int a=1,b=2;
//local variables
clrscr();

printf(“in main(), a=%d,b=%d”,a,b);

fun();

}

void fun()

{

int a=6,b=5;
//local variables
printf(“in fun(),a=%d,b=%d”,a,b);

}

b) Global Variables:-
The variables declared outside the main() function are known as global variables. These variables can be accessed by all the functions of the program.

Example Program:-
int a=3,b=4;
/global variables
void main()

{

clrscr();

printf(“in main(), a=%d,b=%d”,a,b);

a++;

b++;

fun();

}

void fun()

{

printf(“in fun(),a=%d,b=%d”,a,b);

	
	

}

Distinguish between global variables and local variables
	Local Variables
	Global variables

	1.Local variables can be used only inside the
	1. Global variables can used throughout the

	function or the block in which they are
	program.

	declared
	

	2. Local variables get initialized each time
	2. Global variables get initialized only once,

	the function or block containing their
	before the program starts executing.

	declaration is entered.
	

	3. A local variable can contain variables in its
	3. The initial value that you supply for a

	initialize.
	global variable must be constant.

	4. A local variable loses its value, the
	4.Global variables retain their values

	moment the function/block containing it is
	throughout their execution.

	exited. So we cannot expect a local variable
	

	to remain the value deposited in it, the
	

	previous time the function/block was entered.
	

	5.Local variables do not get initialized to any
	5. All Global variables, in the absence of

	specific value, when a value is not provided.
	explicit initialization, are automatically

	Thus a local variable begins with an
	initialized. A global int variable begins with

	unknown value, which may be different each
	the value 0, a global float gets initialized to

	time.
	0.0, a global char holds the ASCII null byte,

	
	and a global pointer points to NULL.

Data transfer between the functions / Parameters Passing:
The technique of passing data from one function to another is known as parameters passing.

Parameter passing can be done in two ways:

1. Call by value

2. Call by reference

Call by value:
In this type value of actual arguments are passed to the formal arguments and the operation is done on the formal arguments. Any change made in the formal arguments does not affect the actual arguments because formal arguments are photocopy of actual arguments.
Changes made in the formal arguments are local to the block of the called function. Once the control returns back to the calling function the changes made vanish.

/* Example program to send values by call by value*/ void main()

{

int a=2,b=3;

void display(int, int);

clrscr();

display(a, b);

printf(“\n\n In main \t a=%d \t b=%d”, a, b);

	
	

getch();

}

void display (int x, int y)

{

printf(“\n In display() before change \t a=%d \t b=%d\n”, x,y);

x=10;

y=12;

printf(“\n In display() after change \t a=%d \t b=%d \n”, x, y);

}

/* Example program on swapping of 2 numbers by using call by value */ void swap(int,int);

void main()

{

int a,b;

printf(“enter any two values\n”);

scanf(“%d%d”,&a,&b);

swap(a,b);

}

void swap(int x,int y)

{

int t;

t=x;

x=y;

y=t;

printf(“after interchange\n”);

printf(“%d %d”,x,y);

}

Call by reference:
In this type instead of passing values, addresses (reference) are passed. Function operates on addresses rather than values. Here the formal arguments are pointers to the actual arguments. Formal arguments point to the actual arguments. Hence the changes made in the arguments are permanent. i.e., the changes made in formal arguments will affect the actual arguments.
/* Example program to send values by call by reference*/ void main()

{

int a=2,b=3;

void display(int*, int*);

clrscr();

display(&a, &b);

printf(“\n\n in main \t a=%d \t b=%d”, a, b);

getch();

}

void display (int *x, int *y)

{

printf(“\n in display() before change \t a=%d \t b=%d\n”, *x, *y);

	
	

*x=10;

*y=12;

printf(“\n in display() after change \t a=%d \t b=%d \n”, *x, *y);

}

/* Ex 2: Swapping of 2 numbers */
#include<stdio.h>

#include<conio.h>

void swap(int *,int *);

void main()

{

int a,b;

printf(“enter any two values\n”);

scanf(“%d%d”,&a,&b);

swap(&a,&b);

printf(“after interchange\n”);

printf(“%d %d”,a,b);

getch();

}

void swap(int *x,int *y)

{

int t;

t=*x;

*x=*y;

*y=t;

}

Function returning more values:
We know that a function can return only one value per call. But we can force the function to return more than one value per call by using call by reference.

void main()

{

int x,y, add, sub, change (int*,int*,int*,int*);

clrscr();

printf(“\n enter values of x&y”);

scanf(“%d %d”, &x, &y);

change(&x, &y, &add, &sub);

printf(“\n Addition=%d \n Subtraction=%d”, add, sub);

getch();

}

change(int *a, int *b, int *c, int *d)

{

*c=*a+*b;

*d=*a-*b;

}

Explanation: In this program return statement is not used. Still function returns more than one value. Actually, no values are returned. Once the addresses of the variables are available, we can directly access them and modify their contents.

	
	

Note:
1. The memory address of any variable is unique.

2. If we declare the same variable for actual and formal arguments, their memory addresses will be different from each other.

STORAGE CLASSES:
Storage Classes:- Not only data type is required to declare a variable but its storage class also has to be mentioned. (or)
The variables declared in C programs are totally different from other languages. We can use the same variable names in the C program in separate blocks. When we declare a variable it is available only to specific part or block of the program. Remaining block or other function cannot get access to the variable.

The area or block of the C program from where the variable can be accessed is known as the scope of variable. The area or scope of the variable depends on its storage class i.e. where and how it is declared. There are four scope variables in C.

1. Function

2. File

3. Block

4. Function prototype

A storage class of variable tells us four things:
(i) Where the variable would be stores.

(ii) The Scope of the variable i.e., in which region of the program the value of variable is actually available for us active.

(iii) Life of the variable i.e., how long the variable i.e., how long the variable would be active in the program(longevity or alive).

(iv) The initial value of the variable if it is not initialized.

Any variable declared in C can have any one of the four storage classes:
1. Automatic variables.

2. External variables.

3. Static variables.

4. Register variables.

The variables may also be broadly categorized, depending on the place of their declaration, as

1. Internal variables (local)
2. External variables (global)
1) Automatic variables are defined inside a function. A variable declared inside a function without storage class name, by default is an auto variable.

The features of automatic variables are:-
	(i)
	Storage
	:
	Memory

	(ii)
	Initial value
	:
	Garbage (or) unpredictable

	(iii)
	Scope
	:
	Within the function

	
	
	

iv)
Life time
:
Till the control remains in the function.

These variables are created when the function is called and destroyed automatically when the function is exited.

Automatic variables are local to the function in which they are declared. These values cannot be accessed by any other function. The keyword used is „auto‟.

Example program1:-
void main()

{

incr();

incr();

incr();

}

void incr()

{

auto int x;

x=x+1;

printf(“%d”, x);

}

Eg 2:
void main ()

{

auto int a =100;

clrscr ();

{

auto int a = 300;

{

auto int a = 500;

printf (“\n\n\t a=%d”,a);

}

printf (“\n\n\t a=%d”,a);

}

printf (“\n\n\t a=%d”, a);

getch ();

	}
	
	

	O/p:
	a = 500 a = 300
	a = 100

Eg 3:
void show ();

void display ();

void main ()

{

int a = 100;

clrscr ();

printf (“\n\t a=%d”, a);

a = a+300;

	
	

show ();

printf (“\n\t a=%d”,a);

a = a*5;

display ();

printf (“\n\t a=%d”,);

getch ();
}

void show ()

{

int a = 100;

a = a/2;

printf (“\n\t a=%d”, a);

}

void display ()

{

int a = 300;

printf (“\n\t a=%d”, a);

a = a*3;

}

O/p:
a=100 a=500 a= 400 a = 300 a = 2000

Eg 4:
void show ();

void main ()

{

int I;

clrscr ();

for (i=1; i<5; i++);

show ()

getch ();

}

void show ()

{

int a= 10;

printf (“\n\n\t a=%d”,a);

a++;

}

2)External variables are also known as global variables. These variables are declared outside the function and the values of these variables are available to all the functions of the program.

Unlike Local Variables, Global Variables can be accessed by any function in the program.

If same name is given to both the global and local variables priority is given to the local variable. The keyword “ extern” is used to declare these variables.

The features of external variables are:
(i)
Storage
:
memory

(ii)
Initial value
:
zero

 (iii)
Scope
:
Global

(iv)
Life time
:
Till the program comes to an end.

Example Program:
#include<stdio.h>

#include<conio.h>

int a=20;

void main()

{

clrscr();

fun1();

fun2();

fun3();

printf(“\n In main function a=%d”, a);

}

fun1()

{

printf(“\n In fun1 a = %d”, a);

}

fun2()

{

int a = 10;

printf(“\n In fun2 a = %d”,a);

}

fun3()

{

printf(“\n In fun3 a = %d”, a);

}

Explanation: In this program local variable and global variables are declared with the same name in fun2(). In this case, when fun2() is called, the local variable „a‟ of fun2() hides the global variable „a‟.

Note:
We can declare external variables by using extern key word inside the function body. Ex: extern int a;

Eg 1:
extern int a = 100; // int a;

void main ()

{

clrscr ();

printf (“\n\n a=%d”, a);

getch ();

}

O/p:
a = 100
//a = 0

Eg 2:
void show ();

void display ();

int a;

void main ()

{

clrscr ();

a = a+100;

printf (“\n\t a=%d”, a);

show ();
a = a+200;

printf (“\n\t a=%d”,a);

display ();

printf (“\n\t a=%d, a);

getch ();

}

void show ()

{

a = a*3;

printf (“\n\t a=%d”,a);

}

void display ()

{

a = a/5;

printf (“\n\t a=%d”, a);

a = a-30;

}

O/p:
a=100 a=300 a= 500 a = 100 a = 70

3) Static variables may be of Local (or) global depending upon where it is declared. If it is declared outside the function, it is static global otherwise if it declared inside a function block, it is static local.
A static variable is initialized only once and can never be re-initialized. The value of static variable persists at each call and last change made in the variable remains throughout the program execution.

The features of a static variable are:-
	(i)
	Storage
	:
	memory

	(ii)
	Initial value
	:
	zero

	(iii)
	Scope
	:
	Local to the block in which variable is defined.

	(iv)
	Life time
	:
	persists till the end of program execution.

Example Programs:-
Eg 1:
void main()

{

incr();

incr();

incr();

	
	

}

void incr()

{

static int x;

x=x+1;

printf(“%d”, x);

}

The keyword used to declare these variables is “static”.

Eg 2:
void main ()

{

static int a;

clrscr ();

printf (“\n\n\t a=%d”,a);

getch ();

}

O/p: a=0

Eg 3:
void show ();

void main ()

{

int i;

clrscr ();

for (i=1; i<=5; i++);

printf (“\n\n\t a=%d”,a);

getch ();

}

void show ()

{

static int a= 10;

printf (“\n\n\t a=%d”,a);

a++;

}

4) Register Variables: Instead of storing in memory, variables can also be stored in register of CPU. The advantage of storing in registers is register access is faster than memory access, so, generally frequently accessed variables are kept in registers for faster execution of the program.

[image: image52.jpg]

Syntax : register int count;

The keyword register tells the compiler that the variable list followed by it is kept on the CPU registers. If the CPU fails to keep the variables in CPU registers, in that case the variables are assured as auto and stored in the memory.

Note:
1. CPU registers are limited in number. So, we cannot declare more variables as register
	
	

variables. Compiler automatically converts the register variables into non-register variables once the limit is reached.

2. We cannot use register class for all types of variables. The CPU registers in microcomputer are 16 bit registers. The data types float and double needs space of more than 16 bits. If we define any variable of these types with register class, no errors will be shown. The compiler treats them as auto variables.
The features of register variables are:-
	(i)
	Storage
	:
	Registers

	(ii)
	Initial value
	:
	Garbage

	(iii)
	Scope
	:
	Local

	(iv)
	Life time
	:
	until the control remains in that function block.

Example Programs:-
Eg 1:
void main()

{

register int i;

for (i=1; i<=5; i++)

printf (“ %d/t”, i);

}

The keyword used to declare these variables is “register”.

Eg 2:
void main ()

{

register int a;

clrscr ();

printf (“\n\t a=%d”, a);

getch ();

}

O/p:
a = 846

Eg 3:
void main ()

{

register int a = 100;

int i;

clrscr ();

for (i=1; i<=50; i++)

printf (“%d\t”, a);

getch ();

}

O/p:
100 (50 times)

	
	

Nesting of functions:
C permits nesting of two functions freely. There is no limit how deeply functions can be nested. Suppose a function a can call function b can call function c and so on. Consider the following program:

void y();
/* global declaration part */

void y()

{

printf(“ \t Y”);

}

void main()

{

void a(), b(), c();

clrscr();

a();

b();

c();

getch();

}

void a()

{

printf(“\t A”);

y();

}

void b()

{

printf(“\t B”);

a();

}

void c()

{

printf(“\t C”);

a();

b();

y();

}

Note:
1. The main() function can call any other function defined before or after main ().

2. The user-defined function can call only those user-defined functions which are defined before it.

BLOCK STRUCTURE:
In „c‟, variables can be defined in a block-structured fashion within a function. Declaration of variables may follow the left brace that starts any compound statement.

Variables declared inside a block are not affected by identically named variables in outer blocks.

	
	

An automatic variable is initialized every time when the block is entered whereas a static variable initialized only once at the time it enters the block.

Example program:-
void main()

{

int i=4;

if(i>3)

{

int i=3;

printf(“%d”, i);

}

printf(“%d”, i);

}

void main()

{

int j,i=4;

for(j=0;j<3;j++)

{

static int i=3;

printf(“%d”, i);

i++;
}

printf(“%d”, i);
}

Recursive Functions:
Recursion is a special case of process, where a function calls itself. A function is called recursive if a statement within the body of a function calls the same function.

factorial(x)

int x;

{

if (x = =1)

return(1);

else

return(x * factorial(x-1));

}

When writing recursive functions, you must have an If stmt somewhere in the recursive function to force the function to return without recursive call being executed. If you do not do this and you call the function, you will fall in an indefinite loop, and will never return from the called function.

/*program to find factorial of a given number using a Recursive function*/ #include<stdio.h>

int factorial(x)

int x;

{

if (x<=1)

	
	

return(1);

else

return(x*factorial(x-1));

}

main()

{

int n,fn;

clrscr();

printf("enter n");

scanf("%d",&n);

fn=factorial(n);
/* Function Call */

printf("the factorial %d is %d\n",n,fn);

getch();
}

In case the value of n is 4, main() would call factorial() with 4 as its actual argument, and factorial() will send back the computed value. But before sending the computed value, factorial() calls factorial() and waits for a value to be returned.

	factorial(4) returns 4*factorial(3)
	4*6
	= 24

	factorial(3) returns 3*factorial(2)
	3*2
	= 6

	factorial(2) returns 2*factorial(1)
	2*1
	= 2

	factorial(1) returns1
	Back substitution

/* A Program to find factorial of a given number using recursion. */ #include<stdio.h>

#include<conio.h>

int factorial(int);

void main()

{

int n,k;

printf(“enter any number\n”);

scanf(“%d”,&n);

k=factorial(n);

printf(“factorial of %d is %d”,n,k);

getch();

}

int factorial(int x)

{

int fact;

if(x==0||x==1)

return(1);

else

{

fact=(x*factorial(x-1));

return(fact);

}

}

/* A Program to print Fibonacci series using recursion. */
	
	

#include<stdio.h>

#include<conio.h>

int fib(int);

void main()

{

int i,n;

printf(“enter limit\n”);

scanf(“%d”,&n);

for(i=1;i<=n;i++)

printf(“%d “,fib(i));

getch();

}

int fib(int x)

{

if(x==1)

return 0;

else if(x==2)

return 1;

else

return(fib(x-1)+fib(x-2));

}

Limitations of Recursion:

Advantages

· Reduce unnecessary calling of function.

· Through Recursion one can Solve problems in easy way while its iterative solution is very big and complex.

Disdvantages

· Recursive solution is always logical and it is very difficult to trace.(debug and understand).

· In recursive we must have an if statement somewhere to force the function to return without the recursive call being executed, otherwise the function will never return.

· Recursion takes a lot of stack space, usually not considerable when the program is small and running on a PC.

· Recursion uses more processor time.

Header Files:
In „c‟, a number of pre-defined functions are available to perform various tasks. To use these functions, we have to include the corresponding header file in which the function is available.

1. stdio.h:- (standard input output library functions)
When any of the functions getchar (), qets (), putchar (), puts (), scanf(), printf () is used the header file stdio.h has to be included.

2. math.h:- (mathematical functions)
1. pow ():-This function returns xn value. Syntax:- pow (x,n);

Eg:- pow (5,3)=53=125.

2. sqrt ():-This function performs square root of the given number. Syntax:- sqrt (n);

Eg:- sqrt (81)=9.

3. log ():-This function returns natural logarithm of the given number. Syntax:- log (n);

Eg:- log (8);

4. log10 ():-This functions returns logarithm value of the given number to the base 10.

	
	

Syntax:- log10 (n);

Eg:- log10(10)=1

5.exp():-This function returns er value.

Syntax:- exp (x);

Eg:- exp(3);

6. ceil ():-This function returns the next higher integer value of the given number. Syntax:- ceil(n);

Eg:- ceil (17.7)=18
ceil (16.1)=17.

7. floor():-This function returns the integer value less than or equal to the given number.

Syntax:- floor (n);

Eg:- floor (17.7) = 17
floor(16.1) = 16.

Cos, acos, cosh, sin, asin, sinh, tan, atan, tanh are also the functions under this header file.

3. Stdlib.h:- (standard Library functions header file)
(i) abs():-This functions returns the absolute value of a given, integer. Syntax:- abs (integer value);

Eg:- abs (-17); =17.

(ii) fabs():-This functions returns absolute value (modulus) of a given floating point number.

Syntax:- fabs (float value);

Eg:- fabs (-17.6) = 17.6.

(iii) ato i ():-This function converts the given string to an integer value. Syntax:- atoi(string);

Eg:- atoi (“123”) =123.

(iv) atof ():-This function converts the given string into floating point value. Syntax:- atof (string);

Eg:- atof (“ 123.56”) = 123.560000.

4. ctype. h:- (character testing and conversion functions)
(i) isalpha():-This function checks whether the given character is an alphabet (or)

not. If it is an alphabet, it returns a non-zero value and otherwise a zero value.

Syntax:- is alpha(„a‟);
True

Eg:-
isalpha („a‟) 
True (non-zero)

isalpha(„2‟)
Flase (zero)

(ii) isalnum():- This function checks whether the given character is an alphabet or a number. If true it returns a non-zero value otherwise a zero value.
Eg:- isalnum(„1‟)
True (non-zero)

	
	

isalnum(„q‟)
False (zero)

(iii) isdigit ():-This function checks whether the given character is a digit or not. If true it returns a non-zero value otherwise a zero value.
Eg:- isdigit („a‟)
True (non zero)

isdigit(„*‟)
False (zero)

(iv) islower ():-This function checks whether the given character is a Lower case alphabet or not. If it is a small letter it returns a non-zero value otherwise a zero value.
Eg:- islower („b‟) 
True (non-zero)

islower(„A‟) 
False (zero)

(v) isupper ():-This function checks whether the given character is a upper case alphabet or not. If it is a capital letter is returns a non-zero value otherwise a zero value.
Eg: isupper („B‟) 
True (non-zero)

isupper(„q‟)
False (zero)

(vi) toupper ():-This function converts the given small letters to an upper case letter.
Eg:- toupper („b‟)=B

toupper(„q‟)=Q

(vii) tolower ():- This function converts the given capital letters to a Lower case letter.
Eg;- tolower („B‟) =b

tolower („Q‟)=q

(viii) toascii():-This function returns the equivalent ASCII value for the given character.
Eg:- toascii („a‟) = 97

toascii(„B‟) = 66

Standard Functions
We know that functions are classified generally in two ways.

1. User – defined functions.

2. Standard Library functions.
	
	

The library functions are pre-defined set of functions. Their task is limited. A user cannot understand the internal working of these functions. The user can only use the functions but can‟t change or modify them.

Standard Input – Output functions:

Reading the data from the input devices and displaying the results on the screen (output devices) are two main tasks of any program. To perform these tasks user friendly C has number of input-output functions. There are number of input-output functions in C based on the data types. When a program needs data, it takes the data through the input functions and send the results obtained through the output functions.

COMMONLY USED LIBRARY FUNCTIONS:
clrscr():
This function clears the previous output from the screen and displays the output of the current program from the first line of the screen. This function is defined in conio.h header file.

Syntax:
clrscr();

exit():
This function terminates the program. It is defined in the process.h header file.

Syntax:
exit();

Restrict Variable:
The restrict type qualifier may only be applied to a pointer. A pointer declaration that uses this type qualifier establishes a special association between the pointer and the object it accesses, making that pointer and expressions based on that pointer, the only ways to directly access the value of that object.

A pointer is the address of a location in memory. More than one pointer can access the same chunk of memory and modify it during the course of a program. The restrict type qualifier is an indication to the compiler that, if the memory addressed by the restrict-qualified pointer is modified, no other pointer will access the same memory. The compiler may choose to optimize code involving restrict – qualified pointers in a way that might otherwise result in incorrect behavior.

It is the responsibilities of the programmer to ensure that restrict-qualified pointers are used as they were intended to be used. Otherwise, undefined behaviour may result.

	Syntax:
	int *restrict x;
	

	
	

Example programs on functions:
/* Write C programs that use both recursive and non-recursive functions To find the factorial of a given integer. */
#include<stdio.h>

#include<conio.h>

unsigned int recur_fact(int n);

unsigned int nonrecur_fact(int n);

void main()

{

int n,i;

clrscr();

printf(“Enter the number”);

scanf(“%d”,&n);

if(n==0)

printf(“Factorial of 0 is 1 \n”);

else

{

printf(“Factorial of %d using Recursive Function is %d \n”, n, recur_fact(n));

printf(“Factorial of %d using Non-Recursive Function is %d \n”, n, nonrecur_fact(n));

}

getch();

}

/* Recursive Function */

unsigned int recur_fact(int n)

{

int f=1;

if(n==1)

return(1);

else

f=n*recur_fact(n-1);

return(f);

}

/* Non-Recursive Function */

unsigned int nonrecur_fact(int n);

{

int f=1;

int i;

for(i=1; i<=n; i++)

{

f=f*i;

}

return(f);

}

Note: To understand the recursive call of function recur_fact() execute the program in step mode using F7.

ARRAYS :
An array is a group of related data items that share a common name. Ex:- Students
The complete set of students are represented using an array name students. A particular value is indicated by writing a number called index number or subscript in brackets after array name. The complete set of value is referred to as an array, the individual values are called elements.

ONE – DIMENSIONAL ARRAYS :
A list of items can be given one variable index is called single subscripted variable or a one-dimensional array.
The subscript value starts from 0. If we want 5 elements the declaration will be
int number[5];
The elements will be number[0], number[1], number[2], number[3], number[4] There will not be number[5]
Declaration of One - Dimensional Arrays :
Type variable – name [sizes];
Type – data type of all elements Ex: int, float etc., Variable – name – is an identifier
Size – is the maximum no of elements that can be stored. Ex:- float avg[50]
This array is of type float. Its name is avg. and it can contains 50 elements only. The range starting from 0 – 49 elements.
Initialization of Arrays :
Initialization of elements of arrays can be done in same way as ordinary variables are done when they are declared.
Type array name[size] = {List of Value};
Ex:- int number[3]={0,0,0};
If the number of values in the list is less than number of elements then only that elements will be initialized. The remaining elements will be set to zero automatically.
Ex:- float total[5]= {0.0,15.75,-10};
The size may be omitted. In such cases, Compiler allocates enough space for all initialized elements.
int counter[]= {1,1,1,1};
/* Program Showing one dimensional array */
#include<stdio.h>
main()
{
int i;
float x[10],value,total; printf(“Enter 10 real numbers\n”);
for(i=0;i<10;i++)
{
scanf(“%f”,&value);
x[i]=value;
}
total=0;
for(i=0;i<10;i++)
total=total+x[i]
for(i=0;i<10;i++)
printf(“x[%2d]=%5.2f\n”,I+1,x[I]);
printf(“total=%0.2f”,total);
}
TWO – DIMENSIONAL ARRAYS:
To store tables we need two dimensional arrays. Each table consists of rows and columns. Two dimensional arrays are declare as
type array name [row-size][col-size];
/* Write a program Showing 2-DIMENSIONAL ARRAY */
/* SHOWING MULTIPLICATION TABLE */
#include<stdio.h>
#include<math.h> #define ROWS 5 #define COLS 5 main()
{
int row,cols,prod[ROWS][COLS]; int i,j;
printf(“Multiplication table”); for(j=1;j< =COLS;j++)
printf(“%d”,j);
for(i=0;i<ROWS;i++)
{
row = i+1; printf(“%2d|”,row);
for(j=1;j < = COLS;j++)
{
COLS=j;
prod[i][j]= row * cols; printf(“%4d”,prod[i][j]);
}
}
}
INITIALIZING TWO DIMENSIONAL ARRAYS:
They can be initialized by following their declaration with a list of initial values enclosed in braces.
Ex:- int table[2][3] = {0,0,0,1,1,1};
Initializes the elements of first row to zero and second row to one. The initialization is done by row by row. The above statement can be written as
int table[2][3] = {{0,0,0},{1,1,1}};
When all elements are to be initialized to zero, following short-cut method may be used.
int m[3][5] = {{0},{0},{0}};
MULTI-DIMENSIONAL ARRAYS:
C allows arrays of three or more dimensions. The exact limit is determined by Compiler.
type array- names[s1][s2][s3] - - - - - [sn]; where si is size of dimension.
Ex:- int Survey[3][5][2];
#include <stdio.h>
void printArray(const int a[][3]);

int main()

{

int array1[2][3] = { { 1, 2, 3 }, { 4, 5, 6 } }; int array2[2][3] = { 1, 2, 3, 4, 5 };

int array3[2][3] = { { 1, 2 }, { 4 } };

printf("Values in array1 by row are:\n"); printArray(array1);

printf("Values in array2 by row are:\n"); printArray(array2);

printf("Values in array3 by row are:\n);

printArray(array3);

return 0;

}

void printArray(const int a[][3])

{

int i; int j;

for (i = 0; i <= 1; i++) { for (j = 0; j <= 2; j++) {

printf("%d ", a[i][j]);

}

printf("\n");

}

}

APPLICATIONS OF ARRAYS :
1.Frequency arrays with their graphical representations. 2.Random number permutations.

FREQUENCY ARRAYS :
Two common statistical applications that use arrays are frequency distributions and histograms. A frequency array shows the number of elements with an identical value found in a series of numbers.

For example ,suppose we have taken a sample of 100 values between 0 and 19.We want to know how many of the values are 0,how many are 1,how many are 2,and so forth up through 19.

We can read these numbers into an array called numbers. Then we create an array of 20 elements that will show the frequency of each number in the series.
One way to do it is to assign the value from the data array to an index and then use the index to access the frequency array.
F=numbers[i];
Frequency[F]++;
Since an index is an expression ,however ,we can simply use the value from our data array to index us in to the frequency array .The value of numbers[i] is determined first ,and then that value is used to index in to frequency.
Frequency[numbers[i]]++
HISTOGRAMS:
A histogram is a pictorial representation of a frequency array .Instead of printing the values of the elements to show the frequency of each number, we print a histogram in the form of a bar chart. For example ,the following figure is a histogram for a set of numbers in the range 0 …19.In this example, asterisks (*) are used to build the bar. Each asterisk represents one occurrence of the data value.
0 0

1 4 * * * * ————(four 1s)

2 7 * * * * * * *

3 7 * * * * * * *————(seven 3s)

.
.
.
18 2 * *

19 0 ————————(zero 19s)

RANDOM NUMBER PERMUTATIONS :
A random number permutation is a set of random numbers in which no numbers are repeated. For example, given a random number permutation of 10 numbers, the values from 0 to 9 would all be included with no duplicates.
Generating random numbers:
To generate a random integral in a range x to y,we must first scale the number and then ,if x is greater than 0 ,shift the number within the range. We scale the number using the modulus operator.
Ex: To produce a random number in the range 0 …50,we simply scale the random number and scaling factor must be one greater than the highest number needed.
rand () %51
modulus works well when our range starts at 0.for example ,suppose we want a random number between 10 and 20.for this we will use one formula
range = (20 - 10) +1;
randno = rand () % range + 10;
To generate a permutation ,we need to eliminate the duplicates. Using histogram concept we can solve the problem most efficiently by using two arrays. The first array contains the random numbers. The second array contains a logical value that indicates whether or not the number represented by its index has been placed in the random number array.
Only the first five random numbers have been placed in the permutation. For each random number in the random number array ,its corresponding location in the have-random array is set to 1. Those locations representing numbers that have not yet been generated are still set to 0.
Searching:

Searching refers to an operation of finding the location of an item in a table or a file. Depending on the location of the records to be searched, searching techniques are classified into two types.

External Searching:

When the records are stored in files, disk, tape any secondary storage, then the searching is known as external searching.

Internal Searching:

When the records are stored in main memory, then it is known as internal searching. In C language we have 2 types of searching techniques,

Linear Search:

This is simplest search technique also known as sequential search. In this method, the array is searched for the required element from the first element onward till either the list is exhausted or the required element is found. It doesn’t required sorted list.

The key which is to be searched is compared with each element of the list. If a match exists, the search is terminated. If the end of the list is reached, it means that the search has failed and the key has no matching element in the list.

Algorithm: linearsearch (a, n, key)

Step 1: for (i=0;i<n;i++)

Step 2: Take the first element in the list. If the element in the list is equal to the desired searching element, then it returns element position. Go to step 5.

Step 3: If it is not end of list, take the next element in the list. Go to step 2.

Step 4: If the element not found then return negative value.

Step 5: End of algorithm.

Example: Consider a list of elements { 4, 10, 5, 15, 6, 30, 40, 9, 7}.

Suppose we want to search for an item 15,

· The search is done from the starting positioned element of list i.e., 4.
· Item ≠ 4 so next positioned item from list is considered.
· The search is continued until match is found with item = 15 and its position is extracted.
· Item ≠ 10 next positioned item from list is considered.
· The search is continued until match is found with item = 15 and its position is extracted.
· Item = 15 successful search, then it returns its position.
· Suppose we want to search for an item 20,

· The list is searched from the starting element onwards,
· Since no match is found with any element of the list, the search failed after considering entire list.

· If element not found then return negative value
Write a program to implement the linear search.

 int linear(int [], int, int);

void main()

{

int a[20],i,n,key,j;

clrscr();

printf("\n Enter number of elements:");

scanf("%d",&n);

printf("\n Enter %d elements",n);

for(i=0;i<n;i++)

scanf("%d",&a[i]);

printf("\n Enter the key to be searched");

scanf("%d",&key);

j=linear(a,n,key);

if(j==-1)

printf("\nData is not found\n");

else

printf("\n%d is found at position %d",key,j); getch();

}

int linear(int a[],int n,int key)

{

int i;

for(i=0;i<n;i++)

{

if(key==a[i]);

return i+1;

}

return -1;

}

Output 1:

Enter number of elements: 5 Enter 5 elements 45 98 76 23 12 Enter the key to be searched 23 23 is found at position 4

Advantages of Linear Search:

· It is simplest known technique.
· The elements in the list can be in any order
Output 2:

Enter number of elements: 5

Enter 5 elements 45 98 76 23 12

Enter the key to be searched 28

Data is not found

Disadvantages of Linear Search:

· This method is inefficient when large number of elements is present in list. Because time taken for search is more.
Complexity of Linear Search:

· The worst, average and best case complexity of linear search is O(n), where n is the number of elements present in the list.

Binary Search:

To implement binary search method, the elements must be in sorted order. This method is implemented as given below,

· The key is compared with item in the middle position of array.
· If the key matches with item, return it and stop.
· If the key is less than mid positioned item, then the item to be found must be in half of array, otherwise it must be in second half of array.
· Repeat the procedure for lower half or upper half of array until the element is found.
Algorithm: binarysearch (a, n, key)
[non-recursive]

Step 1: Initialize low = 0 and high = n-1.

Step 2: repeat thru step 4 while low is less than or equal to high i.e., while(low<=high) do

Step 3: Find the mid value using mid=(low+high)/2.

Step 4: [Compare to search for item]

if key < a[mid] then

high = mid – 1

otherwise, if key > a[mid] then

low = mid + 1

otherwise if key == a[mid] then return mid+1.

Step 5: Unsuccessful search return -1.

Step 6: End of algorithm.

Example: Consider a list of elements { 12, 18, 25, 34, 47, 58, 64, 85, 98}.

Suppose we want to search for an item 85,

STEP 1:

[image: image53.jpg]

mid = (0+8)/2;
[mid value is 4]

Key < a[mid] i.e.,85<47 - false

Key > a[mid] i.e.,85>47 - true, so search upper half of array.

low = mid+1

STEP 2:

[image: image54.jpg]

mid = (5+8)/2;
[mid value is 6]

Key < a[mid] i.e.,85<64 - false

Key > a[mid] i.e.,85> - true, so search upper half of array.

low = mid+1

STEP 3:

[image: image55.jpg]

mid = (7+8)/2;
[mid value is 7]

Key < a[mid] i.e.,85<85 - false

Key > a[mid] i.e.,85>85 -

Key == a[mid] i.e., 85==85 true,

then it returns mid+1 (position).

Suppose we want to search for an item 20,

then it returns -1 (unsuccessful search)

Write a program to implement binary search using non-recursive.

int binary(int [], int, int);

void main()

{

int a[20],i,n,key,j;
int binary(int a[],int n,int key)

clrscr();
{

printf("\n Enter number of elements:");
int low=0, high=n-1, mid;

scanf("%d",&n);
while(low<=high)

printf("\n Enter %d elements",n);
{

for(i=0;i<n;i++)
mid = (low+high)/2;

scanf("%d",&a[i]);
if(key<a[mid])

printf("\n Enter the key to be searched");
high = mid-1;

scanf("%d",&key);
else if(key>a[mid])

j=binary(a,n,key);
low = mid+1;

if(j==-1)
else if(key==a[mid])

printf("\nData is not found\n");
return mid+1;

else
}

printf("\n%d is found at position
return -1;

%d",key,j);
}

getch();

}

Output 1:
Output 2:

Enter number of elements: 5
Enter number of elements: 5

Enter 5 elements 45 98 76 23 12
Enter 5 elements 45 98 76 23 12

Enter the key to be searched 23
Enter the key to be searched 28

23 is found at position 4
Data is not found

Algorithm:

binarysearch (a, low, high, key)
[recursive]

Step 1: Initialize low = 0 and high = n-1.

Step 2: repeat thru step 4 while low is less than or equal to high i.e., while(low<=high) do

Step 3: Find the mid value using mid=(low+high)/2.

Step 4: [Compare to search for item]

if key < a[mid] then

binary(a, low, mid-1, key);

otherwise, if key > a[mid] then

binary(a, mid+1, high, key);

otherwise, if key == a[mid] then return mid+1.

Step 5: Unsuccessful search return -1.

Step 6: End of algorithm.

Advantages of Linear Search:

· When the number of elements in the list is large, binary search executes faster than linear search. Hence this method is efficient when the number of elements is large.
Disadvantages of Linear Search:

· To implement this method the elements in the list must always be in sorted order otherwise it fails.
Complexity of Linear Search:

The worst, average and best case complexity of linear search is O(logn).

Sorting:

Sorting is a method of arranging data in a file in ascending or descending order. Sorting makes handling of records in a file is easier
Bubble Sort:

Bubble sorting is a simple sorting technique in sorting algorithm. It is also known as exchange sort.

The name bubble sort is because after each pass, largest element will bubble up. In bubble sorting algorithm, we arrange the elements of the list by forming pairs of adjacent elements. It means we repeatedly step through the list which we want to sort, compare two items at a time and swap them if they are not in the ascending order.

Here are basic steps of Bubble Sort algorithm:

1. Compare each pair of adjacent elements from the beginning of an array and, if they are in descending order, swap them.

2. If at least one swap has been done, repeat step 1.

3. This process will be continued until all the elements in an array are sorted.

Algorithm

for i := 0 to array_size - 1 do

begin

for j := 0 array_size–1-i do

if a [j] > a [j+1] then

begin

temp := a [j];

a [j] := a[j+1];

a[j+1] := temp;

end

end;

Working of bubble sort algorithm:

Bubble sort (to sort in ascending order) is performed as given below, Consider an array of n elements a[0] to a[n-1]

· In first pass, compare a[0] with a[1]. If a[0] > a[1], swap the numbers otherwise leave it.
· In second pass, Compare a[1] with a[2] and swap the numbers if a[1] > a[2] and so on and compare a[n-2] with a[n-1] and swap the number if a[n-2] > a[n-1].
· By this process the first largest element placed in nth position. This element is not further compared in the remaining passes.
· Now consider first n-1 elements in the list and repeat the above process to place the next largest element in the (n-1)th position. Repeat this process until all the elements are placed in proper positions.
Advantages of Bubble Sort:

[image: image56.jpg]

It is relatively easy to write and understand.

The performance is good for nearly sorted list.

Works well for smaller list of elements.

Disadvantages of Bubble Sort:

[image: image57.jpg]

It is not used for sorting the list of larger size.

[image: image58.jpg]

It is inefficient algorithm because the number of iterations increases with the increase in number of elements to be sorted.

[image: image59.jpg]5111([12]]-5][16
5111([12]|-5]|16
1115|[12]]-5][16
1115|[12]|-5|[16
1115|512 [16
1115|[-5]|12|[16
11195 |[-5]|12] [16
111-5[[5||12|[16
111-5[(5||12|[16
511 1([5]]12][16
5|1 1[[5]]12][16
511 1([5]]12][16

unsorted

5> 1, swap
5< 12, ok
12 > -5, swap
12 < 16, ok

1<5, ok
5> -5, swap

5< 12, ok

1>-5, swap

1<5, ok

5<1, 0k

sorted

The time taken for sorting is more than selection and insertion sort.

Example 1: Sort {5, 1, 12, -5, 16} using bubble sort.

[image: image60.jpg]Keyboard
Input Devices

[image: image61.jpg]

Example 2
C Program for Bubble Sort:

Write a c program to code for bubble sort to sort numbers or arrange them in ascending order.

#include<stdio.h>

#include<conio.h>

void main()

{

int a[20],i,n,k,temp,j;

clrscr();

printf("\n*****BUBBLE SORT*****\n"); printf("\n Enter number of elements in the list:"); scanf("%d",&n);

	printf("\nEnter List:");
	
	

	for(i=0;i<n;i++)
	
	

	scanf("%d",&a[i]);
	
	

	for(i=0;i<n-1;i++)
	// N elements
	

	{
	
	

	for(j=0;j<n-1-i;j++)
	//for adjacent elements

	{
	
	

	if(a[j]>a[j+1])
	
	

	{
	
	

	temp=a[j];
	
	

	a[j]=a[j+1];
	
	

	a[j+1]=temp;
	
	

	
	
	

	}
	
	

	} //end of inner for loop
	

	printf("\n\n after pass %d:\n",i+1);
	

	
	

	for(k=0;k<n;k++)

{

printf("%d\t",a[k]);

}

}//end of outer for loop

printf("\n\n\nList after sorting:\n");

for(i=0;i<n;i++)

printf("%d\t",a[i]);

getch();

}

	

	
	

	
	

	
	

Important questions

1.) Write a program to demonstrate passing an array argument to a function? Consider the problem of finding largest of N numbers defined in an array.

(b) Write a recursive function power(base, exponent) that when invoked returns base exponent?

2. What do you mean by functions? Give the structure of the functions and explain about the arguments and their return values?

3. (a) Distinguish between the following.

(i) Actual and Formal arguments?

(ii) Global and Local variables?

(iii) Automatic and Static variables?

(c) Explain in detail about pass by value and pass by reference. Explain with a sample program?

4. (a) Distinguish between formal variable and actual variable.

(b) Distinguish between Local and Global variable.

(c) Distinguish between Call by value and Call by reference.

5. (a) What are the advantages and disadvantages of recursion?

(b) Write a C program to find the factors of a given integer using a function.

6. (a) Give some important points while using return statement.

(b) Write short notes on scope of a variable.

7. (a) Write short notes on auto and static storage classes.

(b) Write short notes on call by reference.

8. (a) Distinguish between user defined and built-in functions.

(i) What is meant by function prototype? Give an example for function prototype.

9. (a) Distinguish between getchar and scanf functions for reading strings.

(i) Write a program to count the number of words, lines and characters in a text.

10. (a) What do you mean by functions? Give the structure of the functions and explain about the arguments and their return values.

(i) Write a C program that uses a function to sort an array of integers.

11. Define an array. What are the different types of arrays? Explain

12. (a) Write a C program to do matrix multiplications.

(b) Write in detail about one dimensional and multidimensional arrays. Also write about how initial values can be specified for each type of array.

FILL IN BLANKS:-
1. Array is a group of ________________data items.

2. Array is a _______________________ data type.

3. Arrays can be of __________________data types.

4. The elements or the members of the Array are accessed by _______________ names. (same/different).

5. Elements of an array are differentiated by a single subscript value called

_______________.

6. The index value of Array Starts from ________________ number.

7..Arrays are of _______ dimensional and ___________dimensional and ___________
Dimensional.
	
	

· Enumerated, Structure and Union Types –

· The Type Definition (typedef), Enumerated types,

· Structures –Declaration, initialization, accessing structures

· Operations on structures

· Complex structures-Nested structures, structures containing arrays, structures containing Pointers, arrays of structures

· Structures and functions

· Passing structures through pointers

· Self referentialstructures

· Unions, bit fields, C programming examples

· Command–line arguments

· Preprocessor commands

INTRODUCTION TO DERIVED DATA TYPES

The various primitive data types that are available in C language are int, float, char, double and void. Using these primitive data types, we can derive some other data types. Such data types are derived from the basic data types are called derived data types. The various derived data types are Arrays, Pointers, Enumerated, Structure and Union.

Structures:

[image: image62.jpg]Relationship Between System and Application Software

R —

 Definition: In the C language structures are used to group together different types of variables under the same name.

Structure is a collection of variables of different data types under single name. A structure provides a convenience to group of related data types. A structure can contain variables, pointers, other structures, arrays or pointers. All these variables may contain data items of similar or dissimilar data types. Using these variables each item of a structure can be selected. Each variable in the structure represents an item and is called member or field of the structure. Each field has a type.

General format: struct tag_name

{

type1 member1;

type2 member2;

……..

……..

};

A structure is defined with the keyword „struct‟. Where,

“struct” is the keyword which tells the compiler that a structure is being defined member1, member2 … are called members of the structure.

The members are declared with curly braces. The members can be any of the data types such as int, char, float etc.There should be semicolon at the end of closing brace.

Example:

struct lib_books

{

char title[20];

char author[15];

int pages;

float price;

};

The complete structure declaration might look like this

[image: image63.png]Hard Drive
(intemal)

Personal Computing Environment

struct lib_books

{

char title[20];

char author[15];

int pages;

float price;

};struct lib_books, book1, book2, book3;

To holds the details of four fields namely title, author pages and price,the keyword struct declares a structure. These are the members of the structures. Each member may belong to same or different data type. The tag name can be used to define the objects that have the tag names structure. The structure we just declared is not a variable by itself but a template for the structure. We can declare the structure variables using the tag name anywhere in the program. For example the statement, struct lib_books book1,book2,book3; declares the book1,book2,book3 as variables of type struct lib_books each declaration has four elements of the structure lib_books.

A structure is a collection of variables under a single name. These variables can be of different types, and each has a name which is used to select it from the structure. A structure is a convenient way of grouping several pieces of related information together.

Declaration of structure:

As variables are defined before they are used in the function, the structures are also defined and declared before they are used. A structure can be declared using three different ways

[image: image64.png]Clients
(browsers)

Distributed Computing

[image: image12.jpg]

Tagged structures

Structure Variables

Type defined structures

Tagged structure means the structure definition associated with structure name is called tagged structure (i.e. tag_name is the name of the structure).

The tagged structure definition is shown below; struct student

{

char name[10];

int roll_number;

float avg_marks;

};

Here, student is an identifier representing the structure name. It is also called tagname.

The complete structure definition along with structure declaration is shown below; struct student

{

char name[10];

int roll_number;

float avg_marks;

};

/* structure deflaration */ struct student ece, cse;

struct tag_name

{

type1 member1;

type2 member2;

… } v1, v2,v3;
// Structure variables
Structure Variables:

struct student

{

char name[10];

int roll_number;

float avg_marks;

} ece, cse;

1. name, roll_number and average_marks are members of a structure and are not variables. So, they themselves do not occupy any memory.
But, once the structure definition is associated with variables such as ece and cse the compiler allocates memory for the structure variables

Type – Defined Structure

typedef struct

{

type1 member1;

type1 member1;

………}typeid;

-
typedef is keyword added to the beginning of the definition.

-
Using typedef it is not possible to declare a variable. Here, TYPE_ID can be treated as the new date type.

-
Normally all typedef statements are defined at the beginning of the file

immediately after #include and #define statements in a file.

typedef struct

{

char name[10];

int roll_number;

float avg_marks;

} student;

In the above definition, student is the user-defined data type.

Structure declaration using type-defined structure.

i.e. student cse, ece;

Initialization of structures

Consider the structure definition for an employee with three fields name, salary and is as shown below,

struct employee

{

char name[10];

int id;

float salary;

} a = {“Shivashankar”,1686,20000.28};

(OR)

struct emp

{

char name[10];

int id;

float salary;

};

Struct emp a = {“Shivashankar”,1686,20000.28};

Struct emp b = {“Shiva”,1886,18898.28}; //structure declaration with more than one value

Accessing structure members

We can access and assign values to the members of a structure in a number of ways. As mentioned earlier, the members themselves are not variables. The link between a member and a variable is established using the member operator „.‟ Which is also known as “dot operator” or “period operator”.

Example:
struct book

{

char title[20];

char author[20];

int pages;

float price;

}book1, book2, book3;

strcpy(book1.title, “basic”);

strcpy(book1.author, “balagurusamy”);

book1.pages=250;

book1.price=120.50;

we can also use scanf to give values through the keyboard.

scanf(“%s \n”,book1.title);

scanf(“%s \n”,&book1.pages);

Example2:

struct library_books

{

char title[20];

char author[15];

int pages;

float price;

};

The keyword struct informs the compiler for holding fields (title, author, pages and price in the above example). All these are the members of the structure. Each member can be of same or different data type.

The tag name followed by the keyword struct defines the data type of struct. The tag name library_books in the above example is not the variable but can be visualized as template for the structure. The tag name is used to declare struct variables.

Ex: struct library_books book1,book2,book3;

The memory space is not occupied soon after declaring the structure, being it a template. Memory is allocated only at the time of declaring struct variables, like book1 in the above example. The members of the structure are referred as - book1.title, book1.author, book1.pages, book1.price.

Copying and comparing structure variables

Two variables of the same structure type can be copied the same way as ordinary variables. If person1 and person2 belong to the same structure, then the following statements are valid:

book2=book1;

C does not permit any logical operations on structure variables. In case, we need to compare them, we may do so by comparing members individually.

book1 == book2

book1 != book2

Operations on individual members

The individual members are identified using the members are identified using the member operator. A member with the dot operator along with its structure variable can be treated like any other variable name and therefore can be manipulated using expressions and operator.

Example:
float sum = student1.marks + student2.marks; Student2.marks *= 0.5;

We can also apply increment and decrement operators to numeric type members.

student1.number++;

++student1.number;

Three ways to access members

We have used the dot operator to access the members of structure variables. In fact, there are two other ways. The identifier ptr is known as pointer that has been assigned the address of the structure variable n. now members can be accessed in three ways:

	Using dot notation
	:
	n.x

	Using indirection notation
	:
	(*ptr).x

	Using selection notation
	:
	Ptr->x

ARRAY OF STRUCTURES

We may declare an array of structures, each element of the array representing a structure variable. For example:

struct class student[100];

define an array called student, that consists of 100 elements. Each element is defined to be of the type struct class.

Write a c program to calculate the subject wise and student wise totals and store them as a part of the structure.

struct marks

{

int sub1;

int sub2;

int sub3;

int total;

};

void main()

{

int i;

struct marks student [3]={{45,67,81,0}, {75,53,69,0},{57,36,71,0}};

struct marks total;

for(i=0;i<=2;i++)

{

student[i].total=student[i].sub1+ student[i].sub2+ student[i].sub3; total.sub1=total.sub1+student[i].sub1; total.sub2=total.sub2+student[i].sub2; total.sub3=total.sub3+student[i].sub3; total.total=total.total+student[i].total;

	}
	
	
	
	

	printf(“Student
	
	Total\n\n”);
	

	for(i=0;i<=2;i++)
	
	
	

	printf(“student[%d]
	%d\n”, i+1,student[i].total);
	

	printf(“\n Subject
	Totla\n\n”);
	

	printf(“%s
	
	%d\n%s
	%d\n%s
	%d\n”,

	“subject1
	”,total.sub1, “subject2
	”,total.sub2, “subject3
	”,total.sub3);

	printf(“\n grand total
	= %d \n”, total.total);
	

	getch();
	
	
	
	

	}
	
	
	
	

	Output:
	
	
	
	

	Student
	
	Total
	
	

	student[1]
	
	193
	
	

	student[2]
	
	197
	
	

	student[3]
	
	164
	
	

	Subject
	Total
	
	
	

	subject1
	177
	
	
	

	subject2
	156
	
	
	

	subject3
	221
	
	
	

	grand total
	= 554
	
	
	

Arrays within structure

C permits the use of arrays as structure numbers. We have already used arrays of characters inside a structure. Similarly, we can use single dimension or multidimensional arrays of type int or float.

struct marks

{

int number;

float subject[3];

} student[2];

Here, the member subject contains three elements, subject[0], subject[1] and subject[2].

These elements can be accessed using appropriate subscripts.

Example program:

void main()

{

struct marks

{

int sub[3];

int total;

};

struct marks student [3]={45,67,81,0,75,53,69,0,57,36,71,0};

struct marks total;

int i, j;

for(i=0;i<=2;i++)

{

for(j=0;j<=2;j++)

{

student[i].total += student[i].sub[j];

total.sub[j] += student[i].sub[j];

}

total.total += student[i].total;

	}
	
	

	printf(“Student
	Total\n\n”);

	for(i=0;i<=2;i++)
	

	printf(“student[%d]
	%d\n”, i+1,student[i].total);

	printf(“\n Subject
	Totla\n\n”);

	for(j=0; j<=2; j++)
	

	printf(“subject - %d
	%d\n”, j+1,total.sub[j]);

	printf(“\n grand total
	= %d \n”, total.total);

	getch();
	
	

	}
	
	

	Output:
	
	

	Student
	
	Total

	student[1]
	
	193

	student[2]
	
	197

	student[3]
	
	164

	Subject
	Total
	

	subject1
	177
	

	subject2
	156
	

	subject3
	221
	

	grand total
	= 554
	

Structures within Structures

A structure within a structure means nesting of structures. Nesting of structures is permitted in C.

Write a C program to read and display car number, starting time and reaching time.

Use structure within structure.

void main()

{

struct time

{

int second;

int minute;

int hour;

};

struct tt

{

int carno;

struct time st;

struct time rt;

};

struct tt r1;

clrscr();

printf(“\n car no. \t starting time \t reaching time:”);

scanf(“%d”,&r1.carno);

scanf(“%d%d%d”,&r1.st.hour, &r1.st.minute, &r1.st.second);

scanf(“%d%d%d”,&r1.rt.hour, &r1.rt.minute, &r1.rt.second);

printf(“\n \t carno. \t starting time \t reaching time \n”);

printf(“\t%d\t”,r1.carno);

printf(“\t%d:%d:%d\t”,r1.st.hour, r1.st.minute, r1.st.second);

printf(“\t%d:%d:%d”,r1.rt.hour, r1.rt.minute, r1.rt.second);

getch();
}

Output:

car no.
starting time
reaching time: 4321 2 50 30 3 50 25

carno
starting time
reaching time

4321
2:50:30
3:50:25

Structures and Functions

Like variables of standard data type structure variables also can be passed to the function by value or address.

struct book {

char n[30];

char author[30];

int pages;

};

void main()

{

struct book b1={“JAVA COMPLETE REFERENCE”,”P.NAUGHTON”, 886};

show(&b1);

getch();

}

show(struct book *b2)

{

clrscr();

printf(“\n %s by %s of %d pages”, b2->n, b2->author, b2->pages);

}

Output: JAVA COMPLETE REFERENCE by P.NAUGHTON of 886 pages

POINTER TO STRUCTURE

If you want a pointer to a structure you have to use the -> (infix operator) instead of a dot.

Take a look at the following example:

#include<stdio.h>

typedef struct telephone

{

char *name;

int number;

}TELEPHONE;

void main()

{

TELEPHONE index;

TELEPHONE *ptr;

ptr = &index;

ptr->name = "Jane Doe";

ptr->number = 12345;

printf("Name: %s\n", ptr->name);

printf("Telephone number: %d\n", ptr->number);

getch();

}

Note: The -> (infix operator) is also used in the printf statement.

Self-Referential Structures

A structure definition which includes at least one member as a pointer to the same structure is known as self-referential structure.

	Syntax
	Example

	struct struct_name
	Struct student

	{
	

	
	{

	datatype datatypename;
	

	
	Char n[50];

	struct_name * pointer_name;
	

	
	Int rollno;

	};
	

	
	Struct student *ptr;

	
	

	
	};

Self-referential structures are mainly used in the implementation of data structures.

Example: Linked List, trees etc.

UNIONS

Unions are like structures, in which the individual data types may differ from each other. All the members of the union share the same memory / storage area in the memory. Every member has unique storage area in structures. In this context, unions are utilized to observe

the memory space. When all the values need not assign at a time to all members, unions are efficient. Unions are declared by using the keyword union, just like structures.

	union tag_name {

	type1 member1;

	type1 member2;

	};

	

	Ex: union item {
	

	int code;
	

	floa the memory space. When all the values need not assign at a time to all members, unions are efficient. Unions are declared by using the keyword union, just like structures.

Ex: union item {

int code;

float price;

};

The members of the unions are referred as - book1.title, book1.author, book1.pages, book1.price.

What are the properties of Union?

A union is utilized to use same memory space for all different members of union. Union offers a memory section to be treated for one variable type , for all members of the union. Union allocates the memory space which is equivalent to the member of the union, of large memory occupancy.

A union is like a structure in which all members are stored at the same address. Members of a union can only be accessed one at a time. The union data type was invented to prevent memory fragmentation. The union data type prevents fragmentation by creating a standard size for certain data. Just like with structures, the members of unions can be accessed with the . and -> operators. For example:

#include<stdio.h>

typedef union myunion

{

double PI;

int B;

}MYUNION;

void main()

{

MYUNION numbers;

numbers.PI = 3.14;

numbers.B = 50;

getch();

}

t price;};

UNION OF STRUCTURE

We know that one structure can be nested within another structure. It the same way a union can be nested another union. We can also create structure in a union or vice versa.

Write a program to use structure within union. Display the contents of structure elements.

void main()

union z st;

{

st.set.f = 5.5;

struct x

st.set.p[0] = 65;

{

st.set.p[1] = 66;

float f;

clrscr();

char p[2];

printf(“\n%g”, st.set.f);

};

printf(“\n%c”,st.set.p[0]);

union z

printf(“\t%c”,st.set.p[1]);

{

}

struct x set;

output: 5.5

};

A

B

	

	
	

	Difference between Structure and Union

Structure

Union

1. The keyword struct is used to define

1.

The keyword union is used to define

a structure.

a structure.

2. When a variable is associated with a

2.

When a variable is associated with a

structure, the compiler allocates the

union, the compiler allocates the

memory for each member. The size of

memory by considering the size of the

the structure is greater than or equal to

largest member. So, a size of union is

the sum of sizes of its members. The

equal to the size of largest member.

smaller members may end with unused

slack bytes.

3. Each member within a structure is

3.

Memory allocated is shared by

assigned unique storage area.

individual members of union.

4. The address of each member will be

4.

The address is same for all the

in ascending order. This indicates that

members of a union. This indicates that

memory for each member will start at

every member begins at offset values.

different offset values.

5. Altering the value of a member will

5.

Altering the value of any of the

not affect other members of the

member will alter other member values.

structure.

6. Individual members can be accessed

6.

Only one member can be accessed at

at a time.

a time.

7. Several members of a structure can

7.

Only the first member of a union can

be initialized at once.

be initialized.

	

User-defined data types:

The data types defined by the user are known as the user-defined data types. C provides two identifiers typedef and enum to create new data type names.

Typedef:

It allows the user to define an identifier that would represent an existing data type. The user-defined data type identifier can later be used to declare variables.

[image: image65.jpg]

[image: image66.jpg]

[image: image67.jpg]

[image: image68.jpg]

Syntax:
typedef
type identifier;

Type: refers to an existing data type

Identifier: refers to new name given to the data type.

Typedef cannot create a new type but it creates a new name to the existing type.

The main advantage of typedef is that we can create meaningful data type names for increasing the readability of the program.

Ex: 1. typedef int marks;

Here marks are later used to declare variables as:

marks sub1[60], marks sub2[60];

sub1[60], sub2[60] are declared as 60 elements integer variables.

	Example:
	#define H 60
	printf(“enter hours:\n”);

	
	void main()
	scanf(“%d”,&hr);

	
	{
	printf(“\n minutes=%d \t

	
	typedef int hours;
	Seconds=%d”,hr*H,hr*H*H);

	
	hours hr;
	}//OP:hrs=2 mins=120 secs = 7200

Enumeration:

The enumeration data type is defined as follows:

	Syntax:
	enum identifier {value1, value2, …….,valuen} ;

	
	

Identifier: it is a user defined enumerated data type which can be used to declare variables that can have one of the values enclosed within the braces (enumeration constants).

Declaration of variables of this new type:

enum identifier v1, v2, v3,…….,vn ;

[image: image69.jpg]

The enumerated variables v1, v2, v3,…….,vn can only have one of the values value1,

value2, …….,valuen .

Assignments: ex:
v1 = value3;

v4 = value2;

Ex: enum day {Monday, Tuesday, Wednesday, …. Sunday}; (definition of identifier „day‟)

enum day week_st, week_end;
(declaring variable of new type day)

week_st = Monday;

week_end= Friday;

Note:

1. The compiler automatically assigns integer digits beginning with 0 to all the enumeration constants .i.e. 0 is assigned to value1, 1 is assigned to value2, 2 is assigned to value3, and soon. User can also assign values explicitly to the enumeration constants.

Ex: enum day {Monday=1, Tuesday, Wednesday, …. Sunday};

1. The definition and declaration of enumeration variables can be combined in one statement.

Ex: enum day {Monday, Tuesday, Wednesday, …. Sunday} week_st, week_end;

Bit Fields:

The bit field is a special feature available in C language which is normally used to manipulate the bits. Bit fields provides exact amount of bits required for storage of values. If a variable value is 1 or 0 we need a single bit to store it. In the same way if the variable is expressed between 0 and 3, then the 2 bits are sufficient for storing these values. Similarly between 0 and 7, then 3 bits are sufficient and so on. The number of bits required for a variable is specified by non-negative integer followed by semicolon.

A group of several bits can be packed together using a structure. Since bit fields are defined within a structure or union, the various bits can be accessed in a way we access individual members of a structure or union. So, bit field is defined as a special type of structure or union element that allows the user to access individual bits.

To hold the information we use the variables. The variables occupy a minimum of one byte for char and two bytes for integer. Instead of using complete integer if bits are used, space of memory can be saved.

example, to know the information about the vehicles, 1 – petrol vehicle, 2 – diesel vehicle, 3 – two wheeler vehicle, 4 – four wheeler vehicle, 5 – old model and 6 – new model.

Syntax:

struct tag_name

{

data_type identifier1 : bit_length;

data_type identifier2 : bit_length;

……………………………………

data_type identifiern : bit_length;

}

“C” PRE-PROCESSOR:
Pre-Processor is a program that processes the source code before it passes through the compiler. It operates under the control of pre-processor directives pre processor directives are placed in the program before the main line. All of the pre-processor directives begins with a # and do not end with a semicolon.

There are 3 types of pre processor directives in „C‟:

1. Macro Substitution directives

2. File inclusion directives.

3. Compiler control directives.

1. Macro Substitution directives:
Macro Substitution is a process of replacing an identifier by a pre-defined string. This is done by # define statement. This statement is known as macro

Syntax:- # define identifier string.

The string may be any text but the identifier must be a valid „C‟ name.

A macro substitution can be of different forms:-
a. Simple macro substitution.

b. Argument macro substitution.

c. Nested macro substitution.

a) Here the identifier is replaced by a simple string.
Eg:- # define PI 3.142

define TRUE 1

A macro definition can also include expressions.

Eg:- # define c(5*2+1)

To avoid incorrect results, the expression should always be enclosed with in parenthesis. A macro definition can also include any meaningful text.

Eg:-
define MAIN main () {

define SUM (a+b)

define PRINT printf(“%d”, sum);

define END }

MAIN

int a,b;

SUM;

PRINT;

END

b) Parameters can also be passed while defining a macro.
Eg:- #define square (x) ((x)*(x))

#define max (a,b) (((a)x(b))) ? (a): (b))

main ()

{

int a=5,b=6;

printf (“ %d”, max (a,b));

}

c) One macro definition can be used in defining another macro.
Eg:- #define square (x) ((x)*(x))

define cube(x) (square (x) * (x))

There is also a possibility to undefined a macro. This is done by using the statement

undef identifier

This is useful when we want to restrict our definition only to a particular part of a program.

2. File inclusion directives:
A file containing macro definitions or function definitions can be included in a program so as to avoid rewriting the code.

This is done by the following pre-processor directive.

include “filename”
Here filename indicates the file containing the definitions.

This can be done in the following form

include <filename>
The difference is, in this case the file is searched only in the standard directories where as when we include filename in double quotes it is searched in the current directory also.

3. Compiler Control Directives:- Compiler control directives are useful to activate or

deactivate a group of lines in a program. They are,

ifdef
#ifndef
#endif
#else
Eg:- #include “file.c”

#ifdef PI 3.14

printf (“%d%d”, TRUE, FALSE);

else

printf (“%d”, PI);

end if

}

COMMAND LINE ARGUMENTS:

When we see the main() always it has empty parantheses. We can also pass arguments to main(). The arguments can be passed from Operating System Command Prompt. Therefore they are called as Command Line Arguments.

We have two such arguments namely argc and argv. Argc is an integer variable where as argv is array of pointers to character, i.e., an array of strings. Each string in this array will represent a argument that is passed to main. The value of argc will indicate the number of arguments passed. The Skeleton of main along with arguments will look like.

main(int argc, char *argv[])

{

}

In order to pass one or more arguments to the program when it is executed from the Operating System, the parameters must follow the program name on the Command line as.

Programme arg1,arg2………. argn

The individual parameters must be separated by a blank space.

The program name will be stored as the first item argv, followed by each of the parameters.

If there are n parameters, there will be (n+1) entries in argv. argc will automatically be assigned the value (n+1).

Eg:-

#include<stdio.h> main(int argc, char *argv[])

{

int count;

printf(“argc = %d\n”,argc);

for (count =0;count<argc;count++) printf(“argv[%d] = %s\n”, count, argv[count]);

}

Suppose if the above program is saved as cmdprg.c, then the command line for executing program is like

C:\>cmdprg one two three Then output will be ------------

argc =4

 argv[0] =cmdprg

argv[1] =one

argv[2] =two

argv[3] = three.

/* Demonstrate the use of command-line arguments */

#include<stdio.h>

#include<string.h>

#include<stdlib.h>

int main(int argc,char * argv[])

{

//statements

printf(“the number of arguments: %d\n”,argc); printf(“the name of the program : %s\n”,argv[0]); for(int i=1;I<argc; i++)

printf(“user value no. %d: %s\n “, I,argv[i]); return 0;

}//main

output:

c:>cmdline hello

The number of arguments :2

The name of the program:cmdline User value number.1:hello

[image: image70.jpg]TN

UNIT - III

· Pointers – Introduction (Basic Concepts),

· Pointers for inter function communication

· pointers topointers,

· compatibility

· Pointer Applications-Arrays and Pointers, Pointer Arithmetic andarrays

· Passing an array to a function

· memory allocation functions

· array of pointers,

· programming applications, pointers to void, pointers to functions.

· Strings – Concepts, C Strings

· String Input / Output functions

· arrays of strings,

· string manipulation functions,

· string / data conversion, C program examples.

POINTERS :
One of the powerful features of C is ability to access the memory variables by their memory address. This can be done by using Pointers. The real power of C lies in the proper use of Pointers.
A pointer is a variable that can store an address of a variable (i.e., 112300).We say that a pointer points to a variable that is stored at that address. A pointer itself usually occupies 4 bytes of memory (then it can address cells from 0 to 232-1).
Advantages of Pointers :
1. A pointer enables us to access a variable that is defined out side the function.

2. Pointers are more efficient in handling the data tables.

3. Pointers reduce the length and complexity of a program.

4. They increase the execution speed.

Definition :
A variable that holds a physical memory address is called a pointer variable or
Pointer.
Declaration :
Datatype * Variable-name;
Eg:- int *ad;
/* pointer to int */
char *s;
/* pointer to char */
float *fp;
/* pointer to float */
char **s;
/* pointer to variable that is a pointer to char */
A pointer is a variable that contains an address which is a location of another variable in memory.
Consider the Statement
p=&i;
Here ‘&’ is called address of a variable. ‘p’ contains the address of a variable i
The operator & returns the memory address of variable on which it is operated, this is called Referencing.
The * operator is called an indirection operator or dereferencing operator which is used to display the contents of the Pointer Variable.
Consider the following Statements :
int *p,x; x =5; p= &x;
Assume that x is stored at the memory address 2000. Then the output for the following printf statements is :
	
	Output

	Printf(“The Value of x is %d”,x);
	5

	Printf(“The Address of x is %u”,&x);
	2000

	Printf(“The Address of x is %u”,p);
	2000

	Printf(“The Value of x is %d”,*p);
	5

	Printf(“The Value of x is %d”,*(&x));
	5

POINTER FUNCTION ARGUMENTS
Function arguments in C are strictly pass-by-value. However, we can simulate pass-by-reference by passing a pointer. This is very useful when you need to Support in/out(bi-directional) parameters (e.g. swap, find replace) Return multiple outputs (one return value isn't enough) Pass around large objects (arrays and structures).
/* Example of swapping a function can't change parameters */ void bad_swap(int x, int y)
{
int temp; temp = x; x = y;
y = temp;
}
/* Example of swapping - a function can't change parameters, but if a parameter is a pointer it can change the value it points to */
void good_swap(int *px, int *py)
{
int temp;
temp = *px; *px = *py; *py = temp;
}
#include <stdio.h>
void bad_swap(int x, int y);
void good_swap(int *p1, int *p2); main() {
int a = 1, b = 999;
printf("a = %d, b = %d\n", a, b); bad_swap(a, b);
printf("a = %d, b = %d\n", a, b); good_swap(&a, &b);
printf("a = %d, b = %d\n", a, b);
}
POINTERS AND ARRAYS :
When an array is declared, elements of array are stored in contiguous locations. The address of the first element of an array is called its base address.
Consider the array
	2000
	2002
	2004
	2006
	2008

	
	
	
	
	

	a[0]
	a[1]
	a[2]
	a[3]
	a[4]

The name of the array is called its base address.
i.e., a and k& a[20] are equal.
Now both a and a[0] points to location 2000. If we declare p as an integer pointer, then we can make the pointer P to point to the array a by following assignment
P = a;
We can access every value of array a by moving P from one element to another.
	i.e., P
	points to 0th element

	P+1
	points to 1st element

	P+2
	points to 2nd element

	P+3
	points to 3rd
	element

	P +4
	points to 4th
	element

Reading and Printing an array using Pointers :
main()
{
int *a,i;
printf(“Enter five elements:”); for (i=0;i<5;i++)
scanf(“%d”,a+i);
printf(“The array elements are:”); for (i=o;i<5;i++)
printf(“%d”, *(a+i));
}
In one dimensional array, a[i] element is referred by (a+i) is the address of ith element.
* (a+i) is the value at the ith element.
In two-dimensional array, a[i][j] element is represented as *(*(a+i)+j)
POINTERS AND FUNCTIONS :
Parameter passing mechanism in ‘C’ is of two types.
1.Call by Value 2.Call by Reference.
The process of passing the actual value of variables is known as Call by Value.The process of calling a function using pointers to pass the addresses of variables is known as Call by Reference. The function which is called by reference can change the value of the variable used in the call.
Example of Call by Value:
#include<stdio.h> void swap(int, int); main()
{
int a,b;
printf(“Enter the Values of a and b:”); scanf(“%d%d”,&a,&b);
printf(“Before Swapping \n”);
printf(“a = %d \t b = %d”, a,b); swap(a,b);
printf(“After Swapping \n”); printf(“a = %d \t b = %d”, a,b);
}
void swap(int a, int b)
{
int temp; temp = a;
a = b;
b = temp;
}
Example of Call by Reference:
#include<stdio.h>
main()
{
int a,b;
a = 10;
b = 20;
swap (&a, &b);
printf(“After Swapping \n”);
printf(“a = %d \t b = %d”, a,b);
}
void swap(int *x, int *y)
{
int temp;
temp = *x;
*x = *y;
*y = temp;
}
ADDRESS ARITHIMETIC :
Incrementing/Decrementing a pointer variable ,adding and subtracting an integer from pointer variable are all legal and known as pointer arithmetic. Pointers are valid operands in arithmetic expressions ,assignment expressions ,and comparison expressions.
However not all the operators normally used in these expressions are valid in conjunction with pointer variable.
A limited set of arithmetic operations may be performed on pointers. A pointer may be incremented(+ +) or decremented(--) ,an integer may be added to a pointer
(+ or +=),an integer may be subtracted from a pointer(- or -=),or one pointer may be subtracted from another.
We can add and subtract integers to/from pointers – the result is a pointer to another element of this type
Ex : int *pa; char *s;
s-1 →points to char before s (1 subtracted) pa+1→ points to next int (4 added!)
s+9 →points to 9th char after s (9 added) ++pa→ increments pa to point to next int
NULL POINTER :
‘Zero’ is a special value we can assign to a pointer which does not point to anything most frequently, a symbolic constant NULL is used. It is guaranteed, that no valid address is equal to 0.The bit pattern of the NULL pointer does not have to contain all zeros usually it does or it depends on the processor architecture. On many machines, dereferencing a NULL pointer causes a segmentation violation.
NULL ptr is not the same as an EMPTY string.
const char* psz1 = 0; const char* psz2 = ""; assert(psz1 != psz2);
Always check for NULL before dereferencing a pointer.
if (psz1)
/* use psz1 */
sizeof(psz1) // doesn't give you the number of elements in psz1. Need additional size variable.
VOID POINTER :
In C ,an additional type void *(void pointer) is defined as a proper type for generic pointer. Any pointer to an object may be converted to type void * without loss of information. If the result is converted back to the original type ,the original pointer is recovered .
Ex:
main()
{
void *a; int n=2,*m;
double d=2.3,*c; a=&n;
m=a;
printf(“\n%d %d %d”,a,*m,m); a=&d;
c=a;
printf(“\n%d %3.1f %d”,a,*c,c);
}
In the above program a is declared as a pointer to void which is used to carry the address of an int(a=&n)and to carry the address of a double(a=&d) and the original pointers are recovered with out any loss of information.

POINTERS TO POINTERS :
So far ,all pointers have been pointing directely to data.It is possible and with advanced data structures often necessary to use pointers to that point to other pointers. For example,we can have a pointer pointing to a pointer to an integer.This two level indirection is seen as below:
//Local declarations int a;
int* p; int **q;
	Ex:
	
	q
	
	p
	
	a
	

	
	
	234560
	
	
	287650
	
	
	58
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	397870
	
	234560
	
	287650
	

	
	pointer to pointer to integer
	pointer to integer
	integer variable
	

//statements
a=58;
p=&a;
q=&p;
printf(“%3d”,a);
printf(“%3d”,*p);
printf(“%3d”,**q);
There is no limit as to how many level of indirection we can use but practically we seldom use morethan two.Each level of pointer indirection requires a separate indirection operator when it is dereferenced .
In the above figure to refer to ‘a’ using the pointer ‘p’, we have to dereference it as shown below.
*p
To refer to the variable ‘a’ using the pointer ‘q’ ,we have to dereference it twice toget to the integer ‘a’ because there are two levels of indirection(pointers) involved.If we dereference it only once we are referring ‘p’ which is a pointer to an integer .Another way to say this is that ‘q’ is a pointer to a pointer to an integer.The doule dereference is shown below:
**q
In above example all the three references in the printf statement refer to the variable ‘a’. The first printf statement prints the value of the variable ‘a’ directly,second uses the pointer ‘p’,third uses the pointer ‘q’.The result is the value 58 printed 3 times as below
58
58
58
DYNAMIC MEMORY ALLOCATION :
Dynamic memory allocation uses predefined functions to allocate and release memory for data while the program is running. It effectively postpones the data definition ,but not the declaration to run time.
To use dynamic memory allocation ,we use either standard data types or derived types .To access data in dynamic memory we need pointers.
MEMORY ALLOCATION FUNCTIONS:
Four memory management functions are used with dynamic memory. Three of them,malloc,calloc,and realloc,are used for memory allocation. The fourth ,free is used to return memory when it is no longer needed. All the memory management functions are found in standard library file(stdlib.h).
BLOCK MEMORY ALLOCATION(MALLOC) :
The malloc function allocates a block of memory that contains the number of bytes specified in its parameter. It returns a void pointer to the first byte of the allocated memory. The allocated memory is not initialized.
Declaration:
void *malloc (size_t size);
The type size_t is defined in several header files including Stdio.h. The type is usually an unsigned integer and by the standard it is guaranteed to be large enough to hold the maximum address of the computer. To provide portability the size specification in malloc’s actual parameter is generally computed using the sizeof operator. For example if we want to allocate an integer in the heap we will write like this:
Pint=malloc(sizeof(int));
Malloc returns the address of the first byte in the memory space allocated. If it is not successful malloc returns null pointer. An attempt to allocate memory from heap when memory is insufficient is known as overflow.
The malloc function has one or more potential error if we call malloc with a zero size, the results are unpredictable. It may return a null pointer or it may return someother implementation dependant value.
Ex:
If(!(Pint=malloc(sizeof(int)))) // no memory available
exit(100);
//memory available
…
In this example we are allocating one integer object. If the memory is allocated successfully,ptr contains a value. If does not there is no memory and we exit the program with error code 100.
CONTIGIOUS MEMORY ALLOCATION(calloc) :
Calloc is primarily used to allocate memory for arrys.It differs from malloc only in that it sets memory to null characters. The calloc function declaration:
Void *calloc(size_t element_count, size_t element_size);
The result is the same for both malloc and calloc.
calloc returns the address of the first byte in the memory space allocated. If it is not successful calloc returns null pointer.
Example:
If(!(ptr=(int*)calloc(200,sizeof(int)))) //no memory available
exit(100);
//memory available
…
In this example we allocate memory for an array of 200 integers.
REALLOCATION OF MEMORY(realloc):
The realloc function can be highly inefficient and therefore should be used advisedly. When given a pointer to a previously allocated block of memory realloc changes the size of the block by deleting or extending the memory at the end of the block. If the memory can not be extended because of other allocations realloc allocates completely new block,copies the existing memory allocation to the new location,and deletes the old allocation.
Void *realloc(void*ptr,size_t newsize);
Ptr
	
	
	
	
	
	
	
	
	
	Before
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	18
	
	55
	33
	121
	
	64
	1
	
	90
	31
	
	5
	77
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	10 Integers
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	Ptr=realloc(ptr,15*sizeof(int));
	
	
	
	
	
	New elements

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	not initialized

[image: image71.jpg]Operators Associativity|
0 [1->. eft to righ
! ~ ++ == + - * (type) sizeof right to le
* /% ft to righ
o righ
o righ
o righ
o righ
o righ
o righ
o righ
o righ
ft to righ
? right to le
= += -= *= /= %= &= "= |= <<= >>= |right tolef
eft to righ

QOO ID(ID(D(D[|D|D

ptr
	18 55
	33 121 64 1
	90 31 5
	77 ?
	?
	?
	?
	?

15 Integers

After

Releasing Memory(free):When memory locations allocated by malloc,calloc or realloc are no longer needed, they should be freed using the predefined function free. It is an error to free memory with a null pointer, a pointer to other than the first element of an allocated block, a pointer that is a different type then the pointer that allocated the memory, it is also a potential error to refer to memory after it has been released.
Void free(void *ptr);
	
	
	
	
	
	
	
	

	ptr
	
	
	ptr
	
	

	
	
	
	
	
	

	
	Before
	
	After
	
	

	
	
	
	Free(ptr);
	
	

In above example it releases a single element to allocated with a malloc,back to heap.

	
	BEFORE
	
	AFTER

	
	…
	
	…

	Ptr
	200 integers
	ptr
	200 integers

	
	
	Free(ptr);
	

In the above example the 200 elements were allocated with calloc. When we free the pointer in this case, all 200 elements are return to heap. First, it is not the pointers that are being released but rather what they point to. Second , To release an array of memory that was allocated by calloc , we need only release the pointer once. It is an error to attempt to release each element individually.

Releasing memory does not change the value in a pointer. Still contains the address in the heap. It is a logic error to use the pointer after memory has been released.

STRINGS

The group of characters, digits, and symbols enclosed with in double quotation marks are called as strings.

Ex: “MRECW”

Every string terminates with „\0‟ (NULL) character. The decimal equivalent value of null is zero. We use strings generally to manipulate text such as words and sentences. The common operations that we can perform on strings are:

1. Reading and writing strings.

2. Combining strings together.

3. Coping one string to another.

4. Extracting a portion of a string.

5. Comparing string for equality.

Declaration and Initialization:

Every string is always declared as character array.

Syntax:
char string_name [size];

Ex: char name[20];

We can initialize string as follows:

2. Char name[]={„H‟,‟E‟,‟L‟,‟L‟,‟O‟,‟\0‟};

The last character of string is always „\0‟ (NULL). But it is not necessary to write „\0‟ character at the end of the string. The compiler automatically puts „\0\ at the end of the string / character array.

The characters or elements of the string are stored in contiguous memory locations.

Memory map for above example:

	H
	E
	L
	L
	O
	\0

	2000
	2001
	2002
	2003
	2004
	2005

2. Char name [] = ”HELLO”.

In this type also C compiler automatically inserts NULL character at the end of the string.

2. Char name[9]={{„H‟},{‟E‟},{‟L‟},{‟L‟},{‟O‟}};

In the above three formats we can initialize character arrays. We can also initialize character array by using standard input functions like scanf(), gets () etc and we can display strings by using puts (), printf () functions.

The size of the character array: The argument / size of the character array or string = Number of characters in the string + NULL character.

Note:

4. If NULL character is not taken in account then the successive string followed by the first string will be displayed.

5. If we declare size of a string equal to the number of characters. i.e., without taking the NULL character in to account and we print that will display some garbage value followed by the string.

READING STRINGS FROM TERMINAL:

1. Using scanf () function

To read strings from terminal we can use scanf () function with „%s‟ format specifier.

Ex: char name [20];

scanf(“%s”, name);

Limitation: If we use scanf () function for reading string in runtime it terminates its input on the first white space it finds. The scanf () function automatically append NULL character at the end of the input string, so we have to declare a (size of) character array which can accommodate input string and NULL character.

(White space: blanks, tab space, carriage returns, new lines etc.)

2. By using gets () function

By using gets () function we can read a text which consists of more than one word which i not possible with scanf () function. This function is available in <stdio.h> header file.

Ex: gets (string);

Here string is a character array.

Ex: gets (“GOOD MORNING”):

We can pass string in double quotes as an argument.

3. By using getchar () function

We know that getchar () function is used to read single character from the terminal. By using this function repeatedly we can read successive single characters from the input and place them into a character array (string). The reading is terminated when the user enters new line character (\n) or press enter key. After reading the new line character this function automatically appends NULL character at the end of the string in the place of new line character.

Ex: char ch[20];

int i=0;

while ((ch[i]=getchar ())!= „\n\)

{

i = i+1;

}

WRITING STRINGS TO SCREEN

1. BY USING PRINTF () FUNCTION

Using printf () function we can display the string on output screen with the help of format specifier „%s‟.

Ex: printf(“%s”,name);

We can use different format specifications to display strings in various formats according to requirements.

2. By using puts () and putchar () functions

Using puts () function we can display the string without using any format specifier. This function is available in the <stdio.h> header file in C library.

Ex: puts (“GOOD MORNING”);

We can use this function to display messages as shown above.

Using putchar () function we can display one character at a time. So, by using this function repeatedly with the help of a loop statement we can display total string.

Ex: char name [20];

for (i=0;i<5;i++)

putchar (name[i]);

ARITHMETIC OPERATIONS ON CHARACTERS

Observe the following example:

char x = „a‟;
printf (“%d”,x);
The above statement will display integer value 97 on the screen even though x is a character variable, because when a character variable or character constant is used in an expression, it is automatically converted in to integer value by the system. The integer value is equivalent to ASCII code.

We can perform arithmetic operations on character constants and variables.

Ex: int x;

x=‟z‟-1;

printf(“%d”,x);

The above statement is valid statement and that will display 121 one as result, because ASCII value of „z‟ is 122 and therefore the resultant value is 122 – 1 = 121.

atoi () function:

This library function converts a string of digits into their integer values.

Syntax: atoi (string);

Ex: int x;

char no[5] = “2012”;

x = atoi(no);

printf(“%d”,x);

The above statement will display x value as 2012 (which is an integer).

String standard functions
The following table provides frequently used string handling functions which are supported by C compiler.
	Functions
	Description
	

	
	
	

	strlen ()
	Determines Length of a string
	

	
	
	

	strcpy ()
	Copies a string from source to destination
	

	
	
	

	strncpy ()
	Copies specified number of characters of a string to another string

	
	
	

	strcmp ()
	Compares two strings (Discriminates between small and capital letters)

	
	
	

	stricmp ()
	Compares two strings (Doesn‟t Discriminates between small and capital

	
	letters)
	

	strncmp ()
	Compares characters of two strings upto the specified length

	
	
	

	strnicmp ()
	Compares characters of two strings upto the specified length. Ignores case.

	
	
	

	strlwr ()
	Converts upper case characters of a string to lower case

	
	
	

	strupr ()
	Converts lower case characters of a string to upper case

	
	
	

	strdup ()
	Duplicates a string
	

	
	
	

	strchr ()
	Determines first occurrence of a given character
	in a string

	
	
	

	strrchr ()
	Determines last occurrence of a given character
	in a string

	
	
	

	strstr ()
	Determines first occurrence of a given string in another string

	
	
	

	strcat ()
	Appends source string to destination string
	

	
	
	

	strncat ()
	Appends source string to destination string upto specified length

	
	
	

	strrev ()
	Reverses all characters of a string
	

	
	
	

	strset ()
	Sets all characters of string with a given argument or symbol

	
	
	

	strnset ()
	Sets specified number of characters of string with a given argument or

	
	symbol
	

	strspn ()
	Finds up to what length two strings are identical
	

	
	
	

	strpbrk ()
	Searches the first occurrence of the character in a given string and then it

	
	display the string from that character.
	

strlen () function: This function counts the number of characters in a given string.

Syntax:
strlen(string); (or) strlen(“ string”);

Example Program: To implement the purpose of strlen():

void main()

{

char a[80];

int len;

clrscr();

printf(“enter string:”);

scanf(“%s”,a);
//
(or)
get (a);

len=strlen(a);

printf(“\n Name = %s”, a);

printf(“\n Total no of char‟s = %d”, len);

getch();

}

(OR)

void main()

{

int s;

clrscr();

s=strlen(“MRCET”);

printf(“\nTotal no of char‟s =%d”, s);

getch();

}

Output:

Output:

Enter string: MRCET

Name = MRCET

Total no of char‟s = 5

Total no of char‟s = 5

strcpy () function: This function copies the content of one string to another. Here string1 is source string and string2 destination string. String1 and string2 are character arrays. String1 is copied into string2.

Syntax:
strcpy(string2, string1); or strcpy(destination, source);

Example Program: To implement the purpose string copy().

void main()

{

char s1[80]=”sachin”, s2[80];

clrscr();

printf (“\n\n \t given string =%s”, s1);

strcpy(s2,s1);

printf(“\n\n \t copied string = %s ”, s2);

getch();

}

Output:-

given string =sachin

copied string =sachin

strncpy () function: This function performs the same task as strcpy (). The difference between them is that the strcpy() function copies the whole string to destination string. Whereas strncpy() function copies specified length of characters from source to destination string.

Syntax:
strncpy(string2, string1,n); or strcpy(destination, source,n);

Example Program: To copy source string to destination string up to a specified length.

Length is to be entered through the keyboard.

void main()

{

char s1[15], s2[15];

int n;

clrscr();

printf (“\nEnter Source String:”);

gets(s1);

printf (“\nEnter Destination String:”);

gets(s2);

printf(“\n Enter no. of characters to replace in Destination string:”); scanf(“%d”,&n);

strncpy(s2,s1,n);

printf(“\n Source string = %s ”, s1);

printf(“\n Destination string = %s ”, s2);

getch();

}

Output:

Enter Source String: wonderful

Enter Destination String: beautiful

Enter no. of characters to replace in Destination string: 6

Source string = wonderful

Destination string=wonderful

strcmp () function: This function is used to compare two strings identified by the arguments and it returns a value „0‟ if they are equal. If they are not equal it will return numeric difference (ASCII) between the first non-matching characters.

Syntax:
strcmp(string1, string2);

Example Program1: To compare any strings using strcmp().

void main()

{

char m1[30]=”amar”, m2[30] = “balu”;

int s;

clrscr();

s=strcmp(m1, m2);

printf(“ %d ”, s);

getch();

}

Output:-

-1

Example Program2: To compare any strings using strcmp().

void main()

{

int m;

char s1[30], s2[30];

clrscr();

printf(“enter 2 string \n”);

scanf(“%s%s”, &s1, &S2);

printf(“\n\n\n\t %s \t %s”, s1, s2);

m = strcmp(s1, s2);

printf(“\n\n \t %d”, m);

if(m==0)

printf(“\n\n both the strings are equal”);

else if(m<0)

printf(“\n\n first string is less than second string \n”); else

printf(“\n\n first string is greater than second string \n”);

getch();

}

Output:-

enter 2 strings

mrcet

computers

mrcet computers

1

First string is greater than second string

stricmp () function: This function is used to compare two strings. The characters of the strings may be in lower to upper case. This function does not determinate between the cases.

This function returns zero when two strings are same and it returns non-zero value if they are not equal

Syntax: stricmp(string1, string2);

Example Program: To compare two strings using stricmp().

void main()
gets(tr);

{
s=stricmp(sr,tr);

char sr[30], tr[30];
if(s==0)

int s;
puts(“The two strings are Identical.”);

clrscr();
else

printf (“\nEnter Source String:”);
puts(“The two strings are Different”);

gets(sr);
getche();

printf (“\nEnter Target String:”);
}

Output:-

Enter Source String: HELLO

Enter Target String: hello

The two strings are Identical.

strncmp () function: This function is used to compare two strings. This function is same as strcmp() but it compares the character of the string to a specified length

Syntax: strncmp(string1, string2,n); or strncmp(source, target, arguments);

Example Program: To compare two strings using strncmp().

void main()

{

char sr[30], tr[30];

int s,n;

clrscr();

printf (“\nEnter Source String:”);

gets(sr);

printf (“\nEnter Target String:”);

gets(tr);

printf(“\n Enter length up to which comparison is to be made:”); scanf(“%d”,&n);

s=strncmp(sr,tr,n);

if(s==0)

puts(“The two strings are Identical up to %d characters.”,n); else

puts(“The two strings are Different”);

getche();}

Output:-

Enter Source String: goodmorning

Enter Target String: goODNIGHT

Enter length up to which comparison is to be made:2

The two strings are Identical up to 2 characters.

strnicmp () function: This function is used to compare two strings. This function is same as strcmp() but it compares the character of the string to a specified length.

Syntax:strnicmp(string1, string2,n); (or) strnicmp(source, target, arguments);

Example Program: To compare two strings using strnicmp().

void main()

{

char sr[30], tr[30];

int s,n;

clrscr();

printf (“\nEnter Source String:”);

gets(sr);

printf (“\nEnter Target String:”);

gets(tr);

printf(“\n Enter length up to which comparison is to be made:”); scanf(“%d”,&n);

s=strnicmp(sr,tr,n);

if(s==0)

puts(“The two strings are Identical up to %d characters.”,n); else

puts(“The two strings are Different”);

getche();

}

Output:-

Enter Source String: goodmorning

Enter Target String: GOODNIGHT

Enter length upto which comparison is to be made5 The two strings are different.Enter Source String: goodmorning

Enter Target String: GOODNIGHT

Enter length upto which comparison is to be made4 The two strings are identical up to 4 characters.strlwr () function: This function can be used to convert any string to a lower case. When you are passing any uppercase string to this function it converts into lower case.

Syntax:
strlwr(string);

strupr () function: This function is the same as strlwr() but the difference is that strupr() converts lower case strings to upper case.

Syntax:
strupr(string);

Example Program: To implment the purpose of string upper()& string lower().

void main ()

{

char a[80]=”SACHIN”, b[80] = “Karan”;

clrscr();

printf(“\n\n %s \t %s”, a,b);

strlwr(a);

strupr(b);

printf (“\n\n %s \t %s ”,a,b);

getch();

}

Output:-

SACHIN
Karan

sachin
KARAN

strdup() function: This function is used for duplicating a given string at the allocated memory which is pointed by a pointer variable.

Syntax: string2 = strdup(string1);

Example Program: To enter the string and get it‟s duplicate.

void main(){

char s1[10], *s2;

clrscr();

printf(“Enter text:”);

gets(s1);

s2 = strdup(s1);

printf(“\n original string = %s \n duplicate string = %s”,s1,s2);

getch();

}

Output:

Enter text: Engineering

original string = Engineering

duplicate string = Engineering

strchr() function: This function returns the pointer to a position in the first occurrence of the character in the given string.

Where, string is character array, ch is character variable & chp is a pointer which collects address returned by strchr() function.

Example Program: To find first occurrence of a given character in a given string.

void main()

{

char s[30], ch, *chp;

clrscr();

printf(“Enter text:”);

gets(s);

printf(“\n Character to find:”);

ch = getchar();

chp = strchr(string,ch);

if(chp)

printf(“\n character %c found in string.”,ch);

else

printf(“\n character %c not found in string.”,ch);

getch();}

Output:

Enter text: Hello how are you

Character to find: r

Character r found in string.

strrchr() function: In place of strchr() one can use strrchr(). The difference between them is that the strchr() searches occurrence of character from the beginning of the string where as strrchr() searches occurrence of character from the end (reverse).

Syntax: chp = strrchr(string, ch);

strstr() function: This function finds second string in the first string. It returns the pointer location from where the second string starts in the first string. In case the first occurrence in the string is not observed, the function returns a NULL character.

Syntax:
strstr(string1,string2);

Example Program: To implement strstr() function for occurrence of second string in the first string.

void main()

{

char s1[30], s2[30], *chp;

clrscr();

printf(“Enter text:”);

gets(s1);

printf(“\nEnter text:”);

gets(s2);

chp = strstr(s1,s2);

if(chp)

printf(“\n „%s‟ string is present in given string.”,s2); else

printf(“\n „%s‟ string is not present in given string.”,s2);

getch();}

Output:

Enter text: INDIA IS MY COUNTRY

Enter text: INDIA

„INDIA‟ string is present in given string.

strcat () function: This function appends the target string to the source string. Concatenation of two strings can be done using this function.

Syntax:
strcat(string1, string2);

Example Program: To implement the purpose of string concat().

#include<string.h>

void main ()

{

char s[80]=”Hello”,a[80] = “Mrcet”;

clrscr();

printf(“\n %s \t %s”, s,a);

strcat(s,a);
// strcat (s, “mrcet”);

printf (“\n %s ”,s);

getch();

}

Output:-

Hello
Mrecw

HelloMrecw

strncat() function: This function is the same as that of strcat() function. The difference between them is that the former does the concatenation of two strings with another up to the specified length. Here, n is the number of characters to append.

Syntax: strncat(string1, string2, n);

Example Program: To append 2nd string with specified no. of characters at the end of the string using strncat() function.

#include<string.h>

void main ()

{

char s[80]="Hello",a[80] = "Mrcet";

int n;

clrscr();

printf("\n s=%s \t a=%s", s,a);

printf("\n Enter no. of characters to add:");

scanf("%d",&n);

strcat(s," ");

strncat(s,a,n);

printf ("\n %s ",s);

getch();

}

Output:-

s= Hello
a = Mrecw

Enter no. of characters to add: 2

Hello Mr

Strrev () function: This function simply reverses the given string.

Syntax:
strrev(string);

Example Program1: To implement the purpose of string reverse().

#include<string.h>

{

char s[30]=”hello”;

clrscr();

printf("\n\n original text = %s",s);

strrev(s);

printf ("\n\n reverse of text = %s",s);

getch();

}

Output:-
s1=hello

s2=olleh

Example Program2: To implement the purpose of string reverse().

void main()

{

char t[30];

clrscr();

printf(“enter string:”);

scanf(“%s”, &t);
// gets(t);

printf(“\n\n given string = %s”,t);

strrev(t);

printf (“\n\n reversed string = %s”,t);

getch();

}

Output:

enter string: abcdefgh

given string = abcdefgh

reversed string = hgfedcba

strset() function: This function replaces every character of a string with the symbol given by the programmer i.e. the elements of the strings are replaced with the arguments given by the programmer.

Syntax:
strset(string,symbol);

void main()

{

char st[15], symbol;

clrscr();

puts(“Enter string:”);

gets(st);

puts(“Enter symbol for replacement:”);

scanf(“%c”,&symbol);

printf(“\n\n Before strset(): %s”,st);

strset(st,symbol);

printf(“\n After strset(): %s”,st);

getch();

}

Output:

Enter string: LEARN C

Enter symbol for replacement: Y

Before strset(): LEARN C

After strset():
YYYYYY

strnset() function: This function is the same as that of strset(). Here the specified length is provided. Where, n is the no. of characters to be replaced.

Syntax:
strnset(string,symbol,n);

void main()

{

char st[15], symbol;

int n;

clrscr();

puts(“Enter string:”);

gets(st);

puts(“\nEnter symbol for replacement:”);

scanf(“%c”,&symbol);

puts(“\nHow many string characters to be replaced:”); scanf(“%d”,&n);

printf(“\n\n Before strset(): %s”,st);

strnset(st,symbol,n);

printf(“\n After strset(): %s”,st);

getch();

}

Output:

Enter string: ABCDEFGHIJ

Enter symbol for replacement: +

How many string characters to be replaced: 5

Before strset(): ABCDEFGHIJ

After strset():
+++++FGHIJ

strspn(): This function returns the position of the string from where the source array does not match with the target one.

Syntax:
strspn(string1,string2);

Example Program: To indicate after what character the lengths of the 2 strings have no match.

void main()

{

char s1[10], s2[10];

int len;

clrscr();

printf(“Enter string1:”);

gets(s1);

printf(“\nEnter string2:”);

gets(s2);

len = strspn(s1,s2);

printf(“\n\n After %d characters there is no match.\n”, len);

getch();

}

Output:

Enter string1: GOOD MORNING

Enter string2: GOOD BYE

After 5 characters there is no match.

strpbrk() function: This function searches the first occurrence of the character in a given string and then it display the string starting from that character.

Syntax: strpbrk(string1, string2);

Example Program: To print given string from first occurrence of given character.

void main()

{

char string1[20], string2[10];

char *ptr;

clrscr();

printf(“Enter string:”);

gets(string1);

printf(“\n Enter a character:”);

gets(string2);

ptr = strpbrk(string1,string2);

puts(“\n String from given character:”);

printf(ptr);

getch();

}

Output:

Enter string1: Good morning

Enter a character: d

String from given character: d morning.
UNIT – II

Content:

· Functions-

· Designing Structured Programs

· Functions, user defined functions, inter function communication

· Standard functions

· Scope, Storage classes-auto, register, static, extern, scoperules

· type qualifiers

· Recursion- recursive functions, Limitations of recursion, example C programs.

· Arrays – Concepts, using arrays in C

· inter function communication

· array applications- linear search, binary search and bubble sort

· two – dimensional arrays, multidimensional arrays, C program examples

FUNCTIONS

A function is a self contained program segment that carries out a specific, well-defined task.

Every c program can be thought of as a collection of these functions. A large problem has to be split into smaller segments so that it can be efficiently solved. This is where, functions come into the picture. They are actually the smaller segments, which help solve the large problems.

The C language supports two types of functions:

3. Library Functions

4. User defined Functions

The library functions are pre-defined set of functions. Their task is limited. A user cannot understand the internal working of these functions. The user can only use the functions but can‟t change or modify them.

Ex: sqrt(81) gives result 9. Here the user need not worry about its source code, but the result should be provided by the function.

The User defined functions are totally different. The functions defined by the user according to his requirement are called as User defined functions. The user can modify the function according to the requirement. The user certainly understands the internal working of the function. The user has full scope to implement his own ideas in the function. Thus the set of such user defined functions can be useful to another programmer. One should include the file in which the user-defined functions are stored to call the functions in the program.

Ex: Let square(9) is user-defined function which gives the result 81.

Here the user knows the internal working of the square() function, as its source code is visible. This is the major difference between the two types of functions.

Why we use functions?
3. If we want to perform a task repetitively then it is not necessary to re-write the particular block of the program again and again. Shift the particular block of statements in a user-defined function. The function defined can be used for any number of times to perform the task.

Suppose a section of code in a program calculates the simple interest for some specified amount, time and rate of interest. Consider a scenario, wherein later on in the same program the same calculation has to be done for a different amount, rate and time. Functions come to rescue here. Rather than writing the same instructions all over again, a function can be written to calculate the simple interest for any specified amount, time and rate. The program control is then transferred to the function, the calculations are performed and the control is transferred back to the place from where it was transferred.

4. Using functions large programs can be reduced to smaller ones.

	
	

6. It is easy to debug and find out the errors in it. It also increases readability.

7. Programs containing functions are also easier to maintain, because modifications, if required, can be confined to certain functions within the program. In addition to this program, functions can be put in a library of related functions and used by many programs, thus saving on coding time.

8. Facilitates top-down modular programming. In this programming style, the high level of the overall program is solved first while the details of each lower level functions are addressed later.

Elements of user-defined functions:
We know that functions are classified as one of the derived data types in C. So, we can define functions and use them like any other variable in C programs. Therefore we can observe the following similarities between the functions and variables in C.

4. Both function names and variable names are considered as identifiers.

5. Like variables, functions also have types (data types) associated with them.

6. Like variables, function names and their types must be declared and defined before they are used in a program.

In order to make use of a user-defined function, we need to establish three elements that are related to functions.

4. Function definition

5. Function call

6. Function declaration

Function definition (Function Implementation):
It is an independent program module that is specifically written to implement the requirements of the function. It includes the following elements:

Function type, function name, list of parameters (arguments), local variable declarations, body of the functions (list of statements), and a return statement.

All the six elements are grouped into two parts, namely,

3. Function header (First three elements)

4. Function body (Last three statements)

The function structure: The general syntax of a function in C is:

type_specifier function_name (arguments)
{
local variable declaration;
statement-1;
statement-2;
....................
return (value);
}
The type_specifier specifies the data type of the value, which the function will return. If no data type is specified, the function is assumed to return an integer result. The arguments are separated by commas. A function is not returning anything; then we need to specify the return type as void. A pair of empty parentheses must follow the function name if the function definition does not include any arguments.

The parameters list / arguments list declares the variables that will receive the data sent by the calling program. They serve as input data to the function o carry out the specific task.

Types of parameters:
3. Actual parameters: The arguments of calling functions are called as actual parameters.

4. Formal parameters: The arguments of called functions are called as formal parameters.

Note:
A semicolon is not used at the end of the function header.

The body of the function may consist of one or many statements necessary for performing the required task. The body consist of three parts:

4. Local variable declaration

5. Function statements that perform the task of the function

6. A return statement that returns the value evaluated by the function. If a function is not returning any value then we can omit the return statement.

Function call:
A compiler executes the function when a semi-colon is followed by function name. A function can be called simply by using its name like other C statement, terminated by semicolon.

A function can be called any number of times. A function can be called from other function, but a function cannot be defined in another function. We can call main () function from other functions.

EX: 1. /* program to call main function from another user defined function*/ void main()

{

message();

}

void message ()

{

printf(“\n welcome to C lab”);

main();

}

EX:2 /*Program on functions*/
void main ()

{

printf(“\n I am in main”);

india ()

{

printf(“\n i am in india”);

}
}

Here the above program code would be wrong. Since india () is defined in main () function.

	
	

EX:3 /* Program to show how user defined function is called */ void main()

{

int x=1,y=2,z;

z=add (x,y);

printf(“z=%d”,z);

}

add (a,b)

{

return (a+b);

}

In the above program values of x, y (actual parameters) are passed to function add (). Formal arguments „a‟ and „b‟ receive the values. The called function add () calculates the addition of both the variables and returns the result. The result is collected by the variable „z‟ of main () which is printed through the printf () statement.

Note:
5. If the actual parameters are more than the formal parameters, the extra actual arguments will be discarded.

6. On the other hand, if the actual arguments are less than the formals, the unmatched formal arguments will be initialized to some garbage.

7. Any match in data types may also result in some garbage values.

8. The user-defined function can call only those user-defined functions which are defined before it.

Return values and their types:
The value evaluated by any function is send back to the calling function by using return statement. The called function can only return only one value per call. The return statement has the following forms:

3. return;

4. return(expression);

The first form does not return any value to the calling function; it acts as the closing brace of the function. When a return is encountered, the control is immediately passed back to the calling function.

A function may have more than one return statement. This situation arises when the value returned is based on certain conditions:

EX:
if(a>b)

return(1);

else

return(0);

Note:
3. All functions by default return integer type data. But, we can force a function to return a particular type of data by using a type specifier in the function header as discussed earlier.

4. Absence of return statement in called function indicates that no value is returned to the calling function, such functions are called as void.

	
	

How function works?
5. Once a function is defined and called, it takes some data from the calling function and returns a value to the called function.

6. Whenever a function is called, control passes to the called function and working of the calling function is stopped. When the execution of the called function is completed, control returns back to the calling function and execute the next statement.

7. The values of actual arguments passed by the calling function are received by the formal arguments of the called function. The number of actual and formal arguments should be the same.

Extra arguments are discarded if they are defined. If the formal arguments are more than the actual arguments then the extra arguments appear as garbage. Any mismatch in data type will produce the unexpected result.

8. The function operates on formal arguments and sends back the result to the calling function. The return () statement performs this task.

Characteristics of functions:
Depending upon the arguments present, return value send the result back to the calling function. Based on this, the functions are divided into 4 types:

5. Without arguments and return values.
6. Without arguments and but with return values.
7. With arguments but without return values.
8. With arguments and return values.
Without arguments and return values
	Calling function
	Analysis
	Called function

	main()
	
	

	{
	
	add ()

	
	{

	

	add ();
	No arguments are passed.

	

	No values are sent back 

	}
	
	}

5. In this type neither the data is passed through the calling function nor is the data sent back from the called function.

6. There is no data transfer between calling function and called function.

7. If the functions are used to perform any operations, they act independently. They read data values and print result in the same block.

8. This type of functions may be useful to print some messages, draw a line or split the line etc.

Ex: /* program to display message using user-defined function*/ void main ()

{

void message ();
/*FUNCTION PROTOTYPE*/
message ();
/*FUNCTION CALL*/
}

void message ()
/*FUNCTION DEFINITION*/
{

printf(“Have a nice day”);
}

Explanation: This program contains a user-defined function named message (). It requires no arguments and returns nothing. It displays only a message when called.

Without arguments and but with return values:
/* program to receive values from the user defined function without passing any value

through main ()*/
void main()

{

int z;

z=add ();
/* FUNCTION CALL*/
print(“sum = %d”,z);

}

add ()
/* FUNCTION DEFINITION*/
{

int a=2, b=3, y;

y=a+b;

return (y);

}

	Calling function
	Analysis
	Called function

	main()
	
	add ()

	{
	
	{

	int z;
	
	int a=2,b=3,y;

	z=add();
	No arguments are passed.
	y=a+b;

	printf(“sum = %d”,z);
	No values are sent back 
	return(y);

	}
	
	}

In this type of function no arguments are passed through the main () function (calling function). But the called function (add ()) returns the values. Here the called function is independent. It re data from the keyboard or generates form the initialization and returns the values. In this type both the calling function and called function are partly communicated with each other.

With arguments but without return values
In this type of functions arguments are passed to the calling function. The called function operates on the values. But no result is sent back. This called function is also partly dependent on the calling function. The result obtained is utilized in the called function only.

Ex: /* program to calculate sum of two numbers using user-defined function*/ void main ()

{

void add (int, int); /* FUNCTION PROTOTYPE */
int a, b;
add (int x,int y) /* FUN DEFINITION*/
clrscr();
{

printf(“enter the values of a and b”);
int z; /*Local variable declaration*/
scanf(“%d%d”, &a,&b);
z = x+y;

add(a,b);
/* FUNCTION CALL */
printf(“sum = %d”,z);

getch();
}

}

Explanation: in this program two values are passed to add () function. The add () function receives argument from main () and displays sum of a and b. But it returns nothing.

	Calling function
	Analysis
	Called function

	void main()
	
	

	{
	
	add (int x, int y)

	int a,b;
	
	{

	printf(“enter the value of a & b”);
	
	int z; //Local variable

	scanf(“%d %d”, &a, &b);
	
	z = x + y;

	add (a,b);
	Arguments are passed.
	printf(“ sum = %d”,z);

	}
	No values are sent back 
	

	
	
	}

With arguments and return values:
In this type of functions a copy of actual argument is passed to the formal argument from the calling function to the called function. Called function operates on those data values and it will return the result to the calling function. Here data is transferred between calling and called functions.

Ex: /* program to calculate sum of two numbers using user-defined function */ void main()

	{
	
	
	
	

	void add(int, int);
	/*Function prototype declaration */
	

	int a, b, z;
	
	
	

	clrscr();
	
	
	

	printf(“enter the values of a and b”);
	

	scanf(“%d %d”, &a, &b);
	
	

	z=add (a,b); /* Function CALL*/
	

	printf(“sum = %d”, z);
	
	

	getch();
	
	
	

	}
	
	
	
	

	add (int x, int y)
	/* Function Definition */
	

	{
	
	
	
	

	return (x+y);
	
	
	

	}
	
	
	
	

	
	Calling function
	Analysis
	Called function

	
	void main()
	
	
	

	
	{
	
	
	

	
	int a, b, z;
	
	
	

	
	printf(“enter the value of a &
	
	

	
	b”);
	
	
	add (int x, int y)

	
	scanf(“%d %d”, &a, &b);
	
	{

	
	z = add (a,b);
	
	Arguments are passed.
	

	
	printf(“ sum = %d”, z);
	values are send back 
	return (x + y);

	
	getch();
	
	
	

	
	}
	
	
	}

	Local variables & Global variables:-
	

	These are two types of variables.
	
	

	a) Local Variables
	
	

	
	
	

b)

b) Global Variables.

b) Local Variables:-

The variables declared inside a function are known as local variables. The values of these variables cannot be accessed by any other function.
Example:-
void sum (int a, int b)

{

int z;
//local variable
z=a+b;

return (z);

}

Here z is a Local Variable which is declared in the function sum. So, the value of z is restricted to the function sum.

Example Program:-
void main()

{

int a=1,b=2;
//local variables
clrscr();

printf(“in main(), a=%d,b=%d”,a,b);

fun();

}

void fun()

{

int a=6,b=5;
//local variables
printf(“in fun(),a=%d,b=%d”,a,b);

}

b) Global Variables:-
The variables declared outside the main() function are known as global variables. These variables can be accessed by all the functions of the program.

Example Program:-
int a=3,b=4;
/global variables
void main()

{

clrscr();

printf(“in main(), a=%d,b=%d”,a,b);

a++;

b++;

fun();

}

void fun()

{

printf(“in fun(),a=%d,b=%d”,a,b);

	
	

}

Distinguish between global variables and local variables
	Local Variables
	Global variables

	1.Local variables can be used only inside the
	1. Global variables can used throughout the

	function or the block in which they are
	program.

	declared
	

	2. Local variables get initialized each time
	2. Global variables get initialized only once,

	the function or block containing their
	before the program starts executing.

	declaration is entered.
	

	3. A local variable can contain variables in its
	3. The initial value that you supply for a

	initialize.
	global variable must be constant.

	4. A local variable loses its value, the
	4.Global variables retain their values

	moment the function/block containing it is
	throughout their execution.

	exited. So we cannot expect a local variable
	

	to remain the value deposited in it, the
	

	previous time the function/block was entered.
	

	5.Local variables do not get initialized to any
	5. All Global variables, in the absence of

	specific value, when a value is not provided.
	explicit initialization, are automatically

	Thus a local variable begins with an
	initialized. A global int variable begins with

	unknown value, which may be different each
	the value 0, a global float gets initialized to

	time.
	0.0, a global char holds the ASCII null byte,

	
	and a global pointer points to NULL.

Data transfer between the functions / Parameters Passing:
The technique of passing data from one function to another is known as parameters passing.

Parameter passing can be done in two ways:

3. Call by value

4. Call by reference

Call by value:
In this type value of actual arguments are passed to the formal arguments and the operation is done on the formal arguments. Any change made in the formal arguments does not affect the actual arguments because formal arguments are photocopy of actual arguments.
Changes made in the formal arguments are local to the block of the called function. Once the control returns back to the calling function the changes made vanish.

/* Example program to send values by call by value*/ void main()

{

int a=2,b=3;

void display(int, int);

clrscr();

display(a, b);

printf(“\n\n In main \t a=%d \t b=%d”, a, b);

	
	

getch();

}

void display (int x, int y)

{

printf(“\n In display() before change \t a=%d \t b=%d\n”, x,y);

x=10;

y=12;

printf(“\n In display() after change \t a=%d \t b=%d \n”, x, y);

}

/* Example program on swapping of 2 numbers by using call by value */ void swap(int,int);

void main()

{

int a,b;

printf(“enter any two values\n”);

scanf(“%d%d”,&a,&b);

swap(a,b);

}

void swap(int x,int y)

{

int t;

t=x;

x=y;

y=t;

printf(“after interchange\n”);

printf(“%d %d”,x,y);

}

Call by reference:
In this type instead of passing values, addresses (reference) are passed. Function operates on addresses rather than values. Here the formal arguments are pointers to the actual arguments. Formal arguments point to the actual arguments. Hence the changes made in the arguments are permanent. i.e., the changes made in formal arguments will affect the actual arguments.
/* Example program to send values by call by reference*/ void main()

{

int a=2,b=3;

void display(int*, int*);

clrscr();

display(&a, &b);

printf(“\n\n in main \t a=%d \t b=%d”, a, b);

getch();

}

void display (int *x, int *y)

{

printf(“\n in display() before change \t a=%d \t b=%d\n”, *x, *y);

	
	

*x=10;

*y=12;

printf(“\n in display() after change \t a=%d \t b=%d \n”, *x, *y);

}

/* Ex 2: Swapping of 2 numbers */
#include<stdio.h>

#include<conio.h>

void swap(int *,int *);

void main()

{

int a,b;

printf(“enter any two values\n”);

scanf(“%d%d”,&a,&b);

swap(&a,&b);

printf(“after interchange\n”);

printf(“%d %d”,a,b);

getch();

}

void swap(int *x,int *y)

{

int t;

t=*x;

*x=*y;

*y=t;

}

Function returning more values:
We know that a function can return only one value per call. But we can force the function to return more than one value per call by using call by reference.

void main()

{

int x,y, add, sub, change (int*,int*,int*,int*);

clrscr();

printf(“\n enter values of x&y”);

scanf(“%d %d”, &x, &y);

change(&x, &y, &add, &sub);

printf(“\n Addition=%d \n Subtraction=%d”, add, sub);

getch();

}

change(int *a, int *b, int *c, int *d)

{

*c=*a+*b;

*d=*a-*b;

}

Explanation: In this program return statement is not used. Still function returns more than one value. Actually, no values are returned. Once the addresses of the variables are available, we can directly access them and modify their contents.

	
	

Note:
3. The memory address of any variable is unique.

4. If we declare the same variable for actual and formal arguments, their memory addresses will be different from each other.

STORAGE CLASSES:
Storage Classes:- Not only data type is required to declare a variable but its storage class also has to be mentioned. (or)
The variables declared in C programs are totally different from other languages. We can use the same variable names in the C program in separate blocks. When we declare a variable it is available only to specific part or block of the program. Remaining block or other function cannot get access to the variable.

The area or block of the C program from where the variable can be accessed is known as the scope of variable. The area or scope of the variable depends on its storage class i.e. where and how it is declared. There are four scope variables in C.

5. Function

6. File

7. Block

8. Function prototype

A storage class of variable tells us four things:
(v) Where the variable would be stores.

(vi) The Scope of the variable i.e., in which region of the program the value of variable is actually available for us active.

(vii) Life of the variable i.e., how long the variable i.e., how long the variable would be active in the program(longevity or alive).

(viii) The initial value of the variable if it is not initialized.

Any variable declared in C can have any one of the four storage classes:
5. Automatic variables.

6. External variables.

7. Static variables.

8. Register variables.

The variables may also be broadly categorized, depending on the place of their declaration, as

3. Internal variables (local)
4. External variables (global)
1) Automatic variables are defined inside a function. A variable declared inside a function without storage class name, by default is an auto variable.

The features of automatic variables are:-
	(i)
	Storage
	:
	Memory

	(ii)
	Initial value
	:
	Garbage (or) unpredictable

	(iii)
	Scope
	:
	Within the function

	
	
	

iv)
Life time
:
Till the control remains in the function.

These variables are created when the function is called and destroyed automatically when the function is exited.

Automatic variables are local to the function in which they are declared. These values cannot be accessed by any other function. The keyword used is „auto‟.

Example program1:-
void main()

{

incr();

incr();

incr();

}

void incr()

{

auto int x;

x=x+1;

printf(“%d”, x);

}

Eg 2:
void main ()

{

auto int a =100;

clrscr ();

{

auto int a = 300;

{

auto int a = 500;

printf (“\n\n\t a=%d”,a);

}

printf (“\n\n\t a=%d”,a);

}

printf (“\n\n\t a=%d”, a);

getch ();

	}
	
	

	O/p:
	a = 500 a = 300
	a = 100

Eg 3:
void show ();

void display ();

void main ()

{

int a = 100;

clrscr ();

printf (“\n\t a=%d”, a);

a = a+300;

	
	

show ();

printf (“\n\t a=%d”,a);

a = a*5;

display ();

printf (“\n\t a=%d”,);

getch ();
}

void show ()

{

int a = 100;

a = a/2;

printf (“\n\t a=%d”, a);

}

void display ()

{

int a = 300;

printf (“\n\t a=%d”, a);

a = a*3;

}

O/p:
a=100 a=500 a= 400 a = 300 a = 2000

Eg 4:
void show ();

void main ()

{

int I;

clrscr ();

for (i=1; i<5; i++);

show ()

getch ();

}

void show ()

{

int a= 10;

printf (“\n\n\t a=%d”,a);

a++;

}

2)External variables are also known as global variables. These variables are declared outside the function and the values of these variables are available to all the functions of the program.

Unlike Local Variables, Global Variables can be accessed by any function in the program.

If same name is given to both the global and local variables priority is given to the local variable. The keyword “ extern” is used to declare these variables.

The features of external variables are:
(i)
Storage
:
memory

(ii)
Initial value
:
zero

 (iii)
Scope
:
Global

(iv)
Life time
:
Till the program comes to an end.

Example Program:
#include<stdio.h>

#include<conio.h>

int a=20;

void main()

{

clrscr();

fun1();

fun2();

fun3();

printf(“\n In main function a=%d”, a);

}

fun1()

{

printf(“\n In fun1 a = %d”, a);

}

fun2()

{

int a = 10;

printf(“\n In fun2 a = %d”,a);

}

fun3()

{

printf(“\n In fun3 a = %d”, a);

}

Explanation: In this program local variable and global variables are declared with the same name in fun2(). In this case, when fun2() is called, the local variable „a‟ of fun2() hides the global variable „a‟.

Note:
We can declare external variables by using extern key word inside the function body. Ex: extern int a;

Eg 1:
extern int a = 100; // int a;

void main ()

{

clrscr ();

printf (“\n\n a=%d”, a);

getch ();

}

O/p:
a = 100
//a = 0

Eg 2:
void show ();

void display ();

int a;

void main ()

{

clrscr ();

a = a+100;

printf (“\n\t a=%d”, a);

show ();
a = a+200;

printf (“\n\t a=%d”,a);

display ();

printf (“\n\t a=%d, a);

getch ();

}

void show ()

{

a = a*3;

printf (“\n\t a=%d”,a);

}

void display ()

{

a = a/5;

printf (“\n\t a=%d”, a);

a = a-30;

}

O/p:
a=100 a=300 a= 500 a = 100 a = 70

4) Static variables may be of Local (or) global depending upon where it is declared. If it is declared outside the function, it is static global otherwise if it declared inside a function block, it is static local.
A static variable is initialized only once and can never be re-initialized. The value of static variable persists at each call and last change made in the variable remains throughout the program execution.

The features of a static variable are:-
	(i)
	Storage
	:
	memory

	(ii)
	Initial value
	:
	zero

	(iii)
	Scope
	:
	Local to the block in which variable is defined.

	(iv)
	Life time
	:
	persists till the end of program execution.

Example Programs:-
Eg 1:
void main()

{

incr();

incr();

incr();

	
	

}

void incr()

{

static int x;

x=x+1;

printf(“%d”, x);

}

The keyword used to declare these variables is “static”.

Eg 2:
void main ()

{

static int a;

clrscr ();

printf (“\n\n\t a=%d”,a);

getch ();

}

O/p: a=0

Eg 3:
void show ();

void main ()

{

int i;

clrscr ();

for (i=1; i<=5; i++);

printf (“\n\n\t a=%d”,a);

getch ();

}

void show ()

{

static int a= 10;

printf (“\n\n\t a=%d”,a);

a++;

}

4) Register Variables: Instead of storing in memory, variables can also be stored in register of CPU. The advantage of storing in registers is register access is faster than memory access, so, generally frequently accessed variables are kept in registers for faster execution of the program.

Syntax : register int count;

The keyword register tells the compiler that the variable list followed by it is kept on the CPU registers. If the CPU fails to keep the variables in CPU registers, in that case the variables are assured as auto and stored in the memory.

Note:
2. CPU registers are limited in number. So, we cannot declare more variables as register
	
	

variables. Compiler automatically converts the register variables into non-register variables once the limit is reached.

3. We cannot use register class for all types of variables. The CPU registers in microcomputer are 16 bit registers. The data types float and double needs space of more than 16 bits. If we define any variable of these types with register class, no errors will be shown. The compiler treats them as auto variables.
The features of register variables are:-
	(i)
	Storage
	:
	Registers

	(ii)
	Initial value
	:
	Garbage

	(iii)
	Scope
	:
	Local

	(iv)
	Life time
	:
	until the control remains in that function block.

Example Programs:-
Eg 1:
void main()

{

register int i;

for (i=1; i<=5; i++)

printf (“ %d/t”, i);

}

The keyword used to declare these variables is “register”.

Eg 2:
void main ()

{

register int a;

clrscr ();

printf (“\n\t a=%d”, a);

getch ();

}

O/p:
a = 846

Eg 3:
void main ()

{

register int a = 100;

int i;

clrscr ();

for (i=1; i<=50; i++)

printf (“%d\t”, a);

getch ();

}

O/p:
100 (50 times)

	
	

Nesting of functions:
C permits nesting of two functions freely. There is no limit how deeply functions can be nested. Suppose a function a can call function b can call function c and so on. Consider the following program:

void y();
/* global declaration part */

void y()

{

printf(“ \t Y”);

}

void main()

{

void a(), b(), c();

clrscr();

a();

b();

c();

getch();

}

void a()

{

printf(“\t A”);

y();

}

void b()

{

printf(“\t B”);

a();

}

void c()

{

printf(“\t C”);

a();

b();

y();

}

Note:
3. The main() function can call any other function defined before or after main ().

4. The user-defined function can call only those user-defined functions which are defined before it.

BLOCK STRUCTURE:
In „c‟, variables can be defined in a block-structured fashion within a function. Declaration of variables may follow the left brace that starts any compound statement.

Variables declared inside a block are not affected by identically named variables in outer blocks.

	
	

An automatic variable is initialized every time when the block is entered whereas a static variable initialized only once at the time it enters the block.

Example program:-
void main()

{

int i=4;

if(i>3)

{

int i=3;

printf(“%d”, i);

}

printf(“%d”, i);

}

void main()

{

int j,i=4;

for(j=0;j<3;j++)

{

static int i=3;

printf(“%d”, i);

i++;
}

printf(“%d”, i);
}

Recursive Functions:
Recursion is a special case of process, where a function calls itself. A function is called recursive if a statement within the body of a function calls the same function.

factorial(x)

int x;

{

if (x = =1)

return(1);

else

return(x * factorial(x-1));

}

When writing recursive functions, you must have an If stmt somewhere in the recursive function to force the function to return without recursive call being executed. If you do not do this and you call the function, you will fall in an indefinite loop, and will never return from the called function.

/*program to find factorial of a given number using a Recursive function*/ #include<stdio.h>

int factorial(x)

int x;

{

if (x<=1)

	
	

return(1);

else

return(x*factorial(x-1));

}

main()

{

int n,fn;

clrscr();

printf("enter n");

scanf("%d",&n);

fn=factorial(n);
/* Function Call */

printf("the factorial %d is %d\n",n,fn);

getch();
}

In case the value of n is 4, main() would call factorial() with 4 as its actual argument, and factorial() will send back the computed value. But before sending the computed value, factorial() calls factorial() and waits for a value to be returned.

	factorial(4) returns 4*factorial(3)
	4*6
	= 24

	factorial(3) returns 3*factorial(2)
	3*2
	= 6

	factorial(2) returns 2*factorial(1)
	2*1
	= 2

	factorial(1) returns1
	Back substitution

/* A Program to find factorial of a given number using recursion. */ #include<stdio.h>

#include<conio.h>

int factorial(int);

void main()

{

int n,k;

printf(“enter any number\n”);

scanf(“%d”,&n);

k=factorial(n);

printf(“factorial of %d is %d”,n,k);

getch();

}

int factorial(int x)

{

int fact;

if(x==0||x==1)

return(1);

else

{

fact=(x*factorial(x-1));

return(fact);

}

}

/* A Program to print Fibonacci series using recursion. */
	
	

#include<stdio.h>

#include<conio.h>

int fib(int);

void main()

{

int i,n;

printf(“enter limit\n”);

scanf(“%d”,&n);

for(i=1;i<=n;i++)

printf(“%d “,fib(i));

getch();

}

int fib(int x)

{

if(x==1)

return 0;

else if(x==2)

return 1;

else

return(fib(x-1)+fib(x-2));

}

Limitations of Recursion:

Advantages

· Reduce unnecessary calling of function.

· Through Recursion one can Solve problems in easy way while its iterative solution is very big and complex.

Disdvantages

· Recursive solution is always logical and it is very difficult to trace.(debug and understand).

· In recursive we must have an if statement somewhere to force the function to return without the recursive call being executed, otherwise the function will never return.

· Recursion takes a lot of stack space, usually not considerable when the program is small and running on a PC.

· Recursion uses more processor time.

Header Files:
In „c‟, a number of pre-defined functions are available to perform various tasks. To use these functions, we have to include the corresponding header file in which the function is available.

2. stdio.h:- (standard input output library functions)
When any of the functions getchar (), qets (), putchar (), puts (), scanf(), printf () is used the header file stdio.h has to be included.

3. math.h:- (mathematical functions)
1. pow ():-This function returns xn value. Syntax:- pow (x,n);

Eg:- pow (5,3)=53=125.

2. sqrt ():-This function performs square root of the given number. Syntax:- sqrt (n);

Eg:- sqrt (81)=9.

3. log ():-This function returns natural logarithm of the given number. Syntax:- log (n);

Eg:- log (8);

4. log10 ():-This functions returns logarithm value of the given number to the base 10.

	
	

Syntax:- log10 (n);

Eg:- log10(10)=1

5.exp():-This function returns er value.

Syntax:- exp (x);

Eg:- exp(3);

7. ceil ():-This function returns the next higher integer value of the given number. Syntax:- ceil(n);

Eg:- ceil (17.7)=18
ceil (16.1)=17.

8. floor():-This function returns the integer value less than or equal to the given number.

Syntax:- floor (n);

Eg:- floor (17.7) = 17
floor(16.1) = 16.

Cos, acos, cosh, sin, asin, sinh, tan, atan, tanh are also the functions under this header file.

4. Stdlib.h:- (standard Library functions header file)
(i) abs():-This functions returns the absolute value of a given, integer. Syntax:- abs (integer value);

Eg:- abs (-17); =17.

(ii) fabs():-This functions returns absolute value (modulus) of a given floating point number.

Syntax:- fabs (float value);

Eg:- fabs (-17.6) = 17.6.

(v) ato i ():-This function converts the given string to an integer value. Syntax:- atoi(string);

Eg:- atoi (“123”) =123.

(vi) atof ():-This function converts the given string into floating point value. Syntax:- atof (string);

Eg:- atof (“ 123.56”) = 123.560000.

5. ctype. h:- (character testing and conversion functions)
(i) isalpha():-This function checks whether the given character is an alphabet (or)

not. If it is an alphabet, it returns a non-zero value and otherwise a zero value.

Syntax:- is alpha(„a‟);
True

Eg:-
isalpha („a‟) 
True (non-zero)

isalpha(„2‟)
Flase (zero)

(iii) isalnum():- This function checks whether the given character is an alphabet or a number. If true it returns a non-zero value otherwise a zero value.
Eg:- isalnum(„1‟)
True (non-zero)

	
	

isalnum(„q‟)
False (zero)

(iv) isdigit ():-This function checks whether the given character is a digit or not. If true it returns a non-zero value otherwise a zero value.
Eg:- isdigit („a‟)
True (non zero)

isdigit(„*‟)
False (zero)

(v) islower ():-This function checks whether the given character is a Lower case alphabet or not. If it is a small letter it returns a non-zero value otherwise a zero value.
Eg:- islower („b‟) 
True (non-zero)

islower(„A‟) 
False (zero)

(vi) isupper ():-This function checks whether the given character is a upper case alphabet or not. If it is a capital letter is returns a non-zero value otherwise a zero value.
Eg: isupper („B‟) 
True (non-zero)

isupper(„q‟)
False (zero)

(vii) toupper ():-This function converts the given small letters to an upper case letter.
Eg:- toupper („b‟)=B

toupper(„q‟)=Q

(viii) tolower ():- This function converts the given capital letters to a Lower case letter.
Eg;- tolower („B‟) =b

tolower („Q‟)=q

(ix) toascii():-This function returns the equivalent ASCII value for the given character.
Eg:- toascii („a‟) = 97

toascii(„B‟) = 66

Standard Functions
We know that functions are classified generally in two ways.

3. User – defined functions.

4. Standard Library functions.
	
	

The library functions are pre-defined set of functions. Their task is limited. A user cannot understand the internal working of these functions. The user can only use the functions but can‟t change or modify them.

Standard Input – Output functions:

Reading the data from the input devices and displaying the results on the screen (output devices) are two main tasks of any program. To perform these tasks user friendly C has number of input-output functions. There are number of input-output functions in C based on the data types. When a program needs data, it takes the data through the input functions and send the results obtained through the output functions.

COMMONLY USED LIBRARY FUNCTIONS:
clrscr():
This function clears the previous output from the screen and displays the output of the current program from the first line of the screen. This function is defined in conio.h header file.

Syntax:
clrscr();

exit():
This function terminates the program. It is defined in the process.h header file.

Syntax:
exit();

Restrict Variable:
The restrict type qualifier may only be applied to a pointer. A pointer declaration that uses this type qualifier establishes a special association between the pointer and the object it accesses, making that pointer and expressions based on that pointer, the only ways to directly access the value of that object.

A pointer is the address of a location in memory. More than one pointer can access the same chunk of memory and modify it during the course of a program. The restrict type qualifier is an indication to the compiler that, if the memory addressed by the restrict-qualified pointer is modified, no other pointer will access the same memory. The compiler may choose to optimize code involving restrict – qualified pointers in a way that might otherwise result in incorrect behavior.

It is the responsibilities of the programmer to ensure that restrict-qualified pointers are used as they were intended to be used. Otherwise, undefined behaviour may result.

	Syntax:
	int *restrict x;
	

	
	

Example programs on functions:
/* Write C programs that use both recursive and non-recursive functions To find the factorial of a given integer. */
#include<stdio.h>

#include<conio.h>

unsigned int recur_fact(int n);

unsigned int nonrecur_fact(int n);

void main()

{

int n,i;

clrscr();

printf(“Enter the number”);

scanf(“%d”,&n);

if(n==0)

printf(“Factorial of 0 is 1 \n”);

else

{

printf(“Factorial of %d using Recursive Function is %d \n”, n, recur_fact(n));

printf(“Factorial of %d using Non-Recursive Function is %d \n”, n, nonrecur_fact(n));

}

getch();

}

/* Recursive Function */

unsigned int recur_fact(int n)

{

int f=1;

if(n==1)

return(1);

else

f=n*recur_fact(n-1);

return(f);

}

/* Non-Recursive Function */

unsigned int nonrecur_fact(int n);

{

int f=1;

int i;

for(i=1; i<=n; i++)

{

f=f*i;

}

return(f);

}

Note: To understand the recursive call of function recur_fact() execute the program in step mode using F7.

ARRAYS :
An array is a group of related data items that share a common name. Ex:- Students
The complete set of students are represented using an array name students. A particular value is indicated by writing a number called index number or subscript in brackets after array name. The complete set of value is referred to as an array, the individual values are called elements.

ONE – DIMENSIONAL ARRAYS :
A list of items can be given one variable index is called single subscripted variable or a one-dimensional array.
The subscript value starts from 0. If we want 5 elements the declaration will be
int number[5];
The elements will be number[0], number[1], number[2], number[3], number[4] There will not be number[5]
Declaration of One - Dimensional Arrays :
Type variable – name [sizes];
Type – data type of all elements Ex: int, float etc., Variable – name – is an identifier
Size – is the maximum no of elements that can be stored. Ex:- float avg[50]
This array is of type float. Its name is avg. and it can contains 50 elements only. The range starting from 0 – 49 elements.
Initialization of Arrays :
Initialization of elements of arrays can be done in same way as ordinary variables are done when they are declared.
Type array name[size] = {List of Value};
Ex:- int number[3]={0,0,0};
If the number of values in the list is less than number of elements then only that elements will be initialized. The remaining elements will be set to zero automatically.
Ex:- float total[5]= {0.0,15.75,-10};
The size may be omitted. In such cases, Compiler allocates enough space for all initialized elements.
int counter[]= {1,1,1,1};
/* Program Showing one dimensional array */
#include<stdio.h>
main()
{
int i;
float x[10],value,total; printf(“Enter 10 real numbers\n”);
for(i=0;i<10;i++)
{
scanf(“%f”,&value);
x[i]=value;
}
total=0;
for(i=0;i<10;i++)
total=total+x[i]
for(i=0;i<10;i++)
printf(“x[%2d]=%5.2f\n”,I+1,x[I]);
printf(“total=%0.2f”,total);
}
TWO – DIMENSIONAL ARRAYS:
To store tables we need two dimensional arrays. Each table consists of rows and columns. Two dimensional arrays are declare as
type array name [row-size][col-size];
/* Write a program Showing 2-DIMENSIONAL ARRAY */
/* SHOWING MULTIPLICATION TABLE */
#include<stdio.h>
#include<math.h> #define ROWS 5 #define COLS 5 main()
{
int row,cols,prod[ROWS][COLS]; int i,j;
printf(“Multiplication table”); for(j=1;j< =COLS;j++)
printf(“%d”,j);
for(i=0;i<ROWS;i++)
{
row = i+1; printf(“%2d|”,row);
for(j=1;j < = COLS;j++)
{
COLS=j;
prod[i][j]= row * cols; printf(“%4d”,prod[i][j]);
}
}
}
INITIALIZING TWO DIMENSIONAL ARRAYS:
They can be initialized by following their declaration with a list of initial values enclosed in braces.
Ex:- int table[2][3] = {0,0,0,1,1,1};
Initializes the elements of first row to zero and second row to one. The initialization is done by row by row. The above statement can be written as
int table[2][3] = {{0,0,0},{1,1,1}};
When all elements are to be initialized to zero, following short-cut method may be used.
int m[3][5] = {{0},{0},{0}};
MULTI-DIMENSIONAL ARRAYS:
C allows arrays of three or more dimensions. The exact limit is determined by Compiler.
type array- names[s1][s2][s3] - - - - - [sn]; where si is size of dimension.
Ex:- int Survey[3][5][2];
#include <stdio.h>
void printArray(const int a[][3]);

int main()

{

int array1[2][3] = { { 1, 2, 3 }, { 4, 5, 6 } }; int array2[2][3] = { 1, 2, 3, 4, 5 };

int array3[2][3] = { { 1, 2 }, { 4 } };

printf("Values in array1 by row are:\n"); printArray(array1);

printf("Values in array2 by row are:\n"); printArray(array2);

printf("Values in array3 by row are:\n);

printArray(array3);

return 0;

}

void printArray(const int a[][3])

{

int i; int j;

for (i = 0; i <= 1; i++) { for (j = 0; j <= 2; j++) {

printf("%d ", a[i][j]);

}

printf("\n");

}

}

APPLICATIONS OF ARRAYS :
1.Frequency arrays with their graphical representations. 2.Random number permutations.

FREQUENCY ARRAYS :
Two common statistical applications that use arrays are frequency distributions and histograms. A frequency array shows the number of elements with an identical value found in a series of numbers.

For example ,suppose we have taken a sample of 100 values between 0 and 19.We want to know how many of the values are 0,how many are 1,how many are 2,and so forth up through 19.

We can read these numbers into an array called numbers. Then we create an array of 20 elements that will show the frequency of each number in the series.
One way to do it is to assign the value from the data array to an index and then use the index to access the frequency array.
F=numbers[i];
Frequency[F]++;
Since an index is an expression ,however ,we can simply use the value from our data array to index us in to the frequency array .The value of numbers[i] is determined first ,and then that value is used to index in to frequency.
Frequency[numbers[i]]++
HISTOGRAMS:
A histogram is a pictorial representation of a frequency array .Instead of printing the values of the elements to show the frequency of each number, we print a histogram in the form of a bar chart. For example ,the following figure is a histogram for a set of numbers in the range 0 …19.In this example, asterisks (*) are used to build the bar. Each asterisk represents one occurrence of the data value.
4 0

5 4 * * * * ————(four 1s)

6 7 * * * * * * *

7 7 * * * * * * *————(seven 3s)

.
.
.
20 2 * *

21 0 ————————(zero 19s)

RANDOM NUMBER PERMUTATIONS :
A random number permutation is a set of random numbers in which no numbers are repeated. For example, given a random number permutation of 10 numbers, the values from 0 to 9 would all be included with no duplicates.
Generating random numbers:
To generate a random integral in a range x to y,we must first scale the number and then ,if x is greater than 0 ,shift the number within the range. We scale the number using the modulus operator.
Ex: To produce a random number in the range 0 …50,we simply scale the random number and scaling factor must be one greater than the highest number needed.
rand () %51
modulus works well when our range starts at 0.for example ,suppose we want a random number between 10 and 20.for this we will use one formula
range = (20 - 10) +1;
randno = rand () % range + 10;
To generate a permutation ,we need to eliminate the duplicates. Using histogram concept we can solve the problem most efficiently by using two arrays. The first array contains the random numbers. The second array contains a logical value that indicates whether or not the number represented by its index has been placed in the random number array.
Only the first five random numbers have been placed in the permutation. For each random number in the random number array ,its corresponding location in the have-random array is set to 1. Those locations representing numbers that have not yet been generated are still set to 0.
Searching:

Searching refers to an operation of finding the location of an item in a table or a file. Depending on the location of the records to be searched, searching techniques are classified into two types.

External Searching:

When the records are stored in files, disk, tape any secondary storage, then the searching is known as external searching.

Internal Searching:

When the records are stored in main memory, then it is known as internal searching. In C language we have 2 types of searching techniques,

Linear Search:

This is simplest search technique also known as sequential search. In this method, the array is searched for the required element from the first element onward till either the list is exhausted or the required element is found. It doesn’t required sorted list.

The key which is to be searched is compared with each element of the list. If a match exists, the search is terminated. If the end of the list is reached, it means that the search has failed and the key has no matching element in the list.

Algorithm: linearsearch (a, n, key)

Step 1: for (i=0;i<n;i++)

Step 2: Take the first element in the list. If the element in the list is equal to the desired searching element, then it returns element position. Go to step 5.

Step 3: If it is not end of list, take the next element in the list. Go to step 2.

Step 4: If the element not found then return negative value.

Step 5: End of algorithm.

Example: Consider a list of elements { 4, 10, 5, 15, 6, 30, 40, 9, 7}.

Suppose we want to search for an item 15,

· The search is done from the starting positioned element of list i.e., 4.
· Item ≠ 4 so next positioned item from list is considered.
· The search is continued until match is found with item = 15 and its position is extracted.
· Item ≠ 10 next positioned item from list is considered.
· The search is continued until match is found with item = 15 and its position is extracted.
· Item = 15 successful search, then it returns its position.
· Suppose we want to search for an item 20,

· The list is searched from the starting element onwards,
· Since no match is found with any element of the list, the search failed after considering entire list.

· If element not found then return negative value
Write a program to implement the linear search.

 int linear(int [], int, int);

void main()

{

int a[20],i,n,key,j;

clrscr();

printf("\n Enter number of elements:");

scanf("%d",&n);

printf("\n Enter %d elements",n);

for(i=0;i<n;i++)

scanf("%d",&a[i]);

printf("\n Enter the key to be searched");

scanf("%d",&key);

j=linear(a,n,key);

if(j==-1)

printf("\nData is not found\n");

else

printf("\n%d is found at position %d",key,j); getch();

}

int linear(int a[],int n,int key)

{

int i;

for(i=0;i<n;i++)

{

if(key==a[i]);

return i+1;

}

return -1;

}

Output 1:

Enter number of elements: 5 Enter 5 elements 45 98 76 23 12 Enter the key to be searched 23 23 is found at position 4

Advantages of Linear Search:

· It is simplest known technique.
· The elements in the list can be in any order
Output 2:

Enter number of elements: 5

Enter 5 elements 45 98 76 23 12

Enter the key to be searched 28

Data is not found

Disadvantages of Linear Search:

· This method is inefficient when large number of elements is present in list. Because time taken for search is more.
Complexity of Linear Search:

· The worst, average and best case complexity of linear search is O(n), where n is the number of elements present in the list.

Binary Search:

To implement binary search method, the elements must be in sorted order. This method is implemented as given below,

· The key is compared with item in the middle position of array.
· If the key matches with item, return it and stop.
· If the key is less than mid positioned item, then the item to be found must be in half of array, otherwise it must be in second half of array.
· Repeat the procedure for lower half or upper half of array until the element is found.
Algorithm: binarysearch (a, n, key)
[non-recursive]

Step 1: Initialize low = 0 and high = n-1.

Step 2: repeat thru step 4 while low is less than or equal to high i.e., while(low<=high) do

Step 3: Find the mid value using mid=(low+high)/2.

Step 4: [Compare to search for item]

if key < a[mid] then

high = mid – 1

otherwise, if key > a[mid] then

low = mid + 1

otherwise if key == a[mid] then return mid+1.

Step 5: Unsuccessful search return -1.

Step 6: End of algorithm.

Example: Consider a list of elements { 12, 18, 25, 34, 47, 58, 64, 85, 98}.

Suppose we want to search for an item 85,

STEP 1:

mid = (0+8)/2;
[mid value is 4]

Key < a[mid] i.e.,85<47 - false

Key > a[mid] i.e.,85>47 - true, so search upper half of array.

low = mid+1

STEP 2:

mid = (5+8)/2;
[mid value is 6]

Key < a[mid] i.e.,85<64 - false

Key > a[mid] i.e.,85> - true, so search upper half of array.

low = mid+1

STEP 3:

mid = (7+8)/2;
[mid value is 7]

Key < a[mid] i.e.,85<85 - false

Key > a[mid] i.e.,85>85 -

Key == a[mid] i.e., 85==85 true,

then it returns mid+1 (position).

Suppose we want to search for an item 20,

then it returns -1 (unsuccessful search)

Write a program to implement binary search using non-recursive.

int binary(int [], int, int);

void main()

{

int a[20],i,n,key,j;
int binary(int a[],int n,int key)

clrscr();
{

printf("\n Enter number of elements:");
int low=0, high=n-1, mid;

scanf("%d",&n);
while(low<=high)

printf("\n Enter %d elements",n);
{

for(i=0;i<n;i++)
mid = (low+high)/2;

scanf("%d",&a[i]);
if(key<a[mid])

printf("\n Enter the key to be searched");
high = mid-1;

scanf("%d",&key);
else if(key>a[mid])

j=binary(a,n,key);
low = mid+1;

if(j==-1)
else if(key==a[mid])

printf("\nData is not found\n");
return mid+1;

else
}

printf("\n%d is found at position
return -1;

%d",key,j);
}

getch();

}

Output 1:
Output 2:

Enter number of elements: 5
Enter number of elements: 5

Enter 5 elements 45 98 76 23 12
Enter 5 elements 45 98 76 23 12

Enter the key to be searched 23
Enter the key to be searched 28

23 is found at position 4
Data is not found

Algorithm:

binarysearch (a, low, high, key)
[recursive]

Step 1: Initialize low = 0 and high = n-1.

Step 2: repeat thru step 4 while low is less than or equal to high i.e., while(low<=high) do

Step 3: Find the mid value using mid=(low+high)/2.

Step 4: [Compare to search for item]

if key < a[mid] then

binary(a, low, mid-1, key);

otherwise, if key > a[mid] then

binary(a, mid+1, high, key);

otherwise, if key == a[mid] then return mid+1.

Step 5: Unsuccessful search return -1.

Step 6: End of algorithm.

Advantages of Linear Search:

· When the number of elements in the list is large, binary search executes faster than linear search. Hence this method is efficient when the number of elements is large.
Disadvantages of Linear Search:

· To implement this method the elements in the list must always be in sorted order otherwise it fails.
Complexity of Linear Search:

The worst, average and best case complexity of linear search is O(logn).

Sorting:

Sorting is a method of arranging data in a file in ascending or descending order. Sorting makes handling of records in a file is easier
Bubble Sort:

Bubble sorting is a simple sorting technique in sorting algorithm. It is also known as exchange sort.

The name bubble sort is because after each pass, largest element will bubble up. In bubble sorting algorithm, we arrange the elements of the list by forming pairs of adjacent elements. It means we repeatedly step through the list which we want to sort, compare two items at a time and swap them if they are not in the ascending order.

Here are basic steps of Bubble Sort algorithm:

4. Compare each pair of adjacent elements from the beginning of an array and, if they are in descending order, swap them.

5. If at least one swap has been done, repeat step 1.

6. This process will be continued until all the elements in an array are sorted.

Algorithm

for i := 0 to array_size - 1 do

begin

for j := 0 array_size–1-i do

if a [j] > a [j+1] then

begin

temp := a [j];

a [j] := a[j+1];

a[j+1] := temp;

end

end;

Working of bubble sort algorithm:

Bubble sort (to sort in ascending order) is performed as given below, Consider an array of n elements a[0] to a[n-1]

· In first pass, compare a[0] with a[1]. If a[0] > a[1], swap the numbers otherwise leave it.
· In second pass, Compare a[1] with a[2] and swap the numbers if a[1] > a[2] and so on and compare a[n-2] with a[n-1] and swap the number if a[n-2] > a[n-1].
· By this process the first largest element placed in nth position. This element is not further compared in the remaining passes.
· Now consider first n-1 elements in the list and repeat the above process to place the next largest element in the (n-1)th position. Repeat this process until all the elements are placed in proper positions.
Advantages of Bubble Sort:

It is relatively easy to write and understand.

The performance is good for nearly sorted list.

Works well for smaller list of elements.

Disadvantages of Bubble Sort:

It is not used for sorting the list of larger size.

It is inefficient algorithm because the number of iterations increases with the increase in number of elements to be sorted.

The time taken for sorting is more than selection and insertion sort.

Example 1: Sort {5, 1, 12, -5, 16} using bubble sort.

Example 2
C Program for Bubble Sort:

Write a c program to code for bubble sort to sort numbers or arrange them in ascending order.

#include<stdio.h>

#include<conio.h>

void main()

{

int a[20],i,n,k,temp,j;

clrscr();

printf("\n*****BUBBLE SORT*****\n"); printf("\n Enter number of elements in the list:"); scanf("%d",&n);

	printf("\nEnter List:");
	
	

	for(i=0;i<n;i++)
	
	

	scanf("%d",&a[i]);
	
	

	for(i=0;i<n-1;i++)
	// N elements
	

	{
	
	

	for(j=0;j<n-1-i;j++)
	//for adjacent elements

	{
	
	

	if(a[j]>a[j+1])
	
	

	{
	
	

	temp=a[j];
	
	

	a[j]=a[j+1];
	
	

	a[j+1]=temp;
	
	

	
	
	

	}
	
	

	} //end of inner for loop
	

	printf("\n\n after pass %d:\n",i+1);
	

	
	

	for(k=0;k<n;k++)

{

printf("%d\t",a[k]);

}

}//end of outer for loop

printf("\n\n\nList after sorting:\n");

for(i=0;i<n;i++)

printf("%d\t",a[i]);

getch();

}

	

	
	

	
	

	
	

Important questions

13.) Write a program to demonstrate passing an array argument to a function? Consider the problem of finding largest of N numbers defined in an array.

(b) Write a recursive function power(base, exponent) that when invoked returns base exponent?

14. What do you mean by functions? Give the structure of the functions and explain about the arguments and their return values?

15. (a) Distinguish between the following.

(i) Actual and Formal arguments?

(ii) Global and Local variables?

(iii) Automatic and Static variables?

(c) Explain in detail about pass by value and pass by reference. Explain with a sample program?

16. (a) Distinguish between formal variable and actual variable.

(b) Distinguish between Local and Global variable.

(c) Distinguish between Call by value and Call by reference.

17. (a) What are the advantages and disadvantages of recursion?

(b) Write a C program to find the factors of a given integer using a function.

18. (a) Give some important points while using return statement.

(b) Write short notes on scope of a variable.

19. (a) Write short notes on auto and static storage classes.

(c) Write short notes on call by reference.

20. (a) Distinguish between user defined and built-in functions.

(i) What is meant by function prototype? Give an example for function prototype.

21. (a) Distinguish between getchar and scanf functions for reading strings.

(i) Write a program to count the number of words, lines and characters in a text.

22. (a) What do you mean by functions? Give the structure of the functions and explain about the arguments and their return values.

(i) Write a C program that uses a function to sort an array of integers.

23. Define an array. What are the different types of arrays? Explain

24. (a) Write a C program to do matrix multiplications.

(b) Write in detail about one dimensional and multidimensional arrays. Also write about how initial values can be specified for each type of array.

FILL IN BLANKS:-
7. Array is a group of ________________data items.

8. Array is a _______________________ data type.

9. Arrays can be of __________________data types.

10. The elements or the members of the Array are accessed by _______________ names. (same/different).

11. Elements of an array are differentiated by a single subscript value called

_______________.

12. The index value of Array Starts from ________________ number.

7..Arrays are of _______ dimensional and ___________dimensional and ___________
Dimensional.
	
	

UNIT – V

· Input and Output – Concept of a file, streams, text files and binary files

· Differences between text and binary files

· State of a file

· Opening and Closing files

· File input / output functions(standard library input / output functions for files)

· File status functions (error handling),

· Positioning functions (fseek ,rewind and ftell), C program examples.
Definition: File is a set of records that can be accessed through the set of library functions.

File Handling in c
A file is a collection of bytes stored on a secondary storage device, which is generally a disk of some kind. The collection of bytes may be interpreted, for example, as characters, words, lines, paragraphs and pages from a textual document; fields and records belonging to a database; or pixels from a graphical image.

There are two kinds of files that programmers deal
with text files and binary files.

Why we use file Handling:

The input and output operation that we have performed so far were done through screen and keyboard only. After the termination of program all the entered data is lost because primary memory is volatile. If the data has to be used later, then it becomes necessary to keep it in permanent storage device. So the c language provide the concept of file through which data can be stored on the disk or secondary storage device . The stored data can be read whenever required.

Types of File Handling in C:

The file handling in c can be categorized in two types-

High level (Standard files or stream oriented files)- High level file handling is managed by library function. High level file handling commonly used because it is easier and hide most of the details from the programmer.

Low level (system oriented files) - low level files handling is managed by system calls.

Ways of storing data in files

There are two ways of storing data in files.

6. Text Format- A text file can be a stream of characters that a computer can process sequentially. It is not only processed sequentially but only in forward direction. For this reason a text file is usually opened for only one kind of operation (reading, writing, or appending) at any given time. Text files are in human readable form they can be created and read using any text editor.
2.Binary Format-- In binary format data is stored on the disk same way as it is represented in the computer memory . binary files are not in human readable form they can be created and read by a specific program written for them .The binary data stored in the file can-t be read by any editor. The input and output operation in binary files take less time as compared to that of the text files because in binary files no conversion have to take place .However the data written using binary format is not very portable since the size of data types and byte order may be different on different machine. In text format, these problems do not arise. So it is more portable.

Streams: Stream means reading and writing data to the file. If the flow is from an input device then the stream is called an input stream and if the flow is to the output device then the stream is called an output stream. With the help of stream users can access the files efficiently.

Concept of Buffer in file Handling:

Buffer is an area in memory where the data is temporarily stored before being written to the file. When we open a file, a buffer is automatically associated with its file pointer. whatever data be send to the file is not immediately written to the file .First it send to the buffer and when the buffer is full then its contents are written to the file .when the file is closed all the contents of buffer are automatically written to the file even is buffer is not full .this is called flushing the buffer. we can also explicitly flush the buffer by a function fflush(). The concept of buffer is used to increase the efficiency.

Basic operations on a file:

Opening a file

Reading or writing a file

Closing file.

And also need to fulfill three important points:

Naming of file

Data structure of file

Purpose of file

Naming of file:The file name must be specified for a particular file. The file name is typically a string of characters. If the file is used for storing text we use „.txt‟, for a programs we give „.c‟, for header file we give „.h‟ extension and so on. Ex: “data.txt”, “add.c”, “stdio.h” and so on.

Data structure of file: File is the data type defined for a file.

Syntax: FILE pointer type.

Ex: FILE *fp;
where „fp‟ is the pointer to the file structure.

Purpose of file:

Here the file should be defined whether the file is to be read, written or appended by defining the modes.

Opening a file - A file must be open before any I/O operation can be performed on that file. The structure named File is defined in the file stdio.h that contains all information about the file like name, status, buffer size, current position, end of the file status.

A file pointer is a pointer to a structure of type FILE. Whenever a file opened, a structure of type FILE is associated with it, and the file pointer that points to the Structure identifies this file. Every file you open has its own file pointer variable. When you wish to write to a file you specify the file by using its file pointer variable.

FILE *fp1,*fp2….;

You may use any name you wish.

Declaration of fopen() function: fopen() function takes two strings as arguments.

3. Name of the file to be opened

4. The Mode that decide which operations (read, write, append and etc.) are to be performed on the file.

[image: image13.png]A
Syntax:

FILE *fp1, *fp2;
fp1=fopen("ashish.txt”, "w"); |
fp2=fopen("anurag.txt”, "r');

FILE *fpl:
fp1=fopen("filename extension”, “file openmode"):

File name refers to any name of the file with an extension such as .txt, .obj, .c and etc.

File open mode refers to the mode of opening the file. The file can be opened in “read mode”, “write mode” and “appended mode” and also it can be opened with a combination of any two modes out of these three.

Writing a file in C:

When a file is opened for writing, it will be created if it does not already exist and it will be reset if it does, resulting in the deletion of any data already there. Using the 'w' indicates that the file is assumed to be a text file.

Reading a file using C :

Once The file has been opened for reading using fopen() function . The file‟s contents are brought into memory and a pointer points to the starting character of the file contents. To read the file‟s contents from memory there exists a function called fgetc() .

Closing the File:

After the required operations on a file are done, the file needs to be closed with the associated pointer. This is done using the function fclose() through the statement. Once we close the file we can no longer read from it using getc() unless we reopen the file. The fclose() function is used for closing opened files. The only argument it accepts is the file pointer.
	Declaration of fclose() function :

	int fclose(FILE * fptr);

	Ex: fclose (fp) ;

[image: image14.png]File mode | Description

x

Open a pre-existing file for reading and set the pointer to the beginning of
the fle.

» Create a text file for writing, if it exists, it s overvritien without confirmation.
[Open a pre-existing file and append text to the end of the file. If file does not
2 lexist then new file is opened. i.¢,, the mode of 2" same as mode of v
b Opena pre-existing binary fle for reading
b |Createa binary file for witing, if it exists, it s overwaitten
®2 |vithout confirmation.
5 |Opena pre-existing binary file in write-mode and append data to the end
2 lofthefile. File doesnot exist then mode ,2b" same as b
w+ \oPm a file in read/write-mode, set the pointer to the beginning of the file.
o+ hu ‘mode is used for both reading and writing.
5 | rhis mode e can be read & secords can be added st the end of e
wib |Openabinary-file in read/write mode, set the pointer to the beginning of
Y2 lthe file.
b Open a binary-file in read/write-mode, if the file does not exist, it will not

be created.

\()pcn a binary file in read mode & records can be added at the end of file.

General structure of file program

#include<stdio.h>

void main()

{

FILE * fp;

/* Open any file .txt format file and mode(read, write, append)*/

fp=fopen("filename","mode");

fclose(fp);

};

End of file - The file reading function need to know the end of file so that they can stop reading .when the end of file is reached, the operating signal sends an end of file signal to the program. when the program receive this signal , the file reading function return EOF which is constant defined in the file stdio.h an its value -1 . EOF is an integer value so make sure the return value of the function is assigned to a integer variables.

[image: image15.png]Function Name Operation

fopen() Creates a new file. Opens an existing file.

fclose() Closes a file which has been opened for use.

Faetel) Reads a character from current pointer position & advances
the pointer to next character.

Tontc) Whites characters one by one toa file

forintf() Wites all types of data values to a file

fscanf() Readsall types of data values from a file.

fgetw() Reads an integer from a file.

fontw() Wites an integer to the file.

fseek() Sets the position to desired point in the file

ftell() Gives the current position in the file.

rewind() Sets the position to the beginning of the file.

fcloseall) Tt closes all opened files with fopen().

feof() Detects the end of file.

rename() Changes the name of the file.

fwrite() Wites block of structured data to the file.

fread() Reads structured data written by fiite().

ferror() Reports error occurred while read\write operations.

faets() Reads string from the file

fonts() Wites string to the file

remove() or unlink()

Removes the specified file from the disk.

	
	Some Function used for file Handling

	
	1.
	Character I/O
	-
	fgetc(), fputc(), getc(), putc().

	
	2.
	String I/O
	-
	
	fgets(), fputs().

	
	3.
	Integer I/O
	-
	
	getw(), putw().

	
	4.
	Formatted I/O
	-
	fscanf(), fprintf().

	
	5.
	Record I/O
	-
	
	fread(), fwrite().

Character I/O: fputc(), fgetc(), getc(), putc() .
fputc() Function: this function writes characters one by one to a specified file at the current file position and then increment the file position pointer .

Declaration: int fputc(int var_name,, FILE *stream); Ex: fputc(c,fp);

fgetc() Function : It is a character oriented function. This function reads the single character from a given file and increment the file pointer position. On success it returns the character after converting it.

Declaration: int fgetc(FILE *stream);
Ex: fgetc(fp);

If successful, it returns the next requested object from the stream. Character values are returned as an unsigned char converted to an int. If the stream is at end-of-file or a read error occurs, then it returns EOF.

getc() function and putc() function : The getc() and putc() are exactly similar to that of fgetc() and fputc().

int putc (int ch, FILE *file) // define putc() method

	int getc (FILE *file)
	// define getc() method

	
	

	/* program to understand the use of
	/* program to understand the use of fgetc()

	fputc() function */
	
	function */
	

	#include<stdio.h>
	
	
	

	void main()
	#include <stdio.h>
	

	{
	void main()
	

	FILE *p;
	{
	
	

	char ch;
	
	int c;
	

	p=fopen("myfile.txt","w");
	/* FILE is a structure defined in <stdio.h>*/

	if(p== NULL)
	
	FILE *ptr;
	

	{
	
	ptr = fopen("file.txt","r"); //Open the file

	printf("this file does not exist\n");
	
	
	

	exit();
	/* Read one character at a time, checking for the

	}
	End of File.EOF is defined in <stdio.h>as -1*/

	else
	
	
	

	{
	while ((c = fgetc(ptr)) != EOF)

	printf("enter the text");
	
	{
	

	while((ch==getchar())!=EOF)
	
	printf("%c",c);
	//O/P the character to the screen

	fputc(ch,p);
	
	}
	

	}
	
	fclose(ptr);
	// Close the file.

	fclose(p);
	
	getch();
	

	getch();
	}
	
	

	}
	
	
	

String I/O fputs() function :

The fputs() function writes the content of the string pointed to by str to the specified stream.

The fputs() function returns the last character written on success and EOF on failure.

	Declaration: fputs(char *str , FILE *stream);
	Ex: fputs(text,fp); (text[20] string)

fgets() Function:

Here str is the base address where the string is to be stored, n is the number of characters to be stored and fptr is a file pointer of type FILE structure which specifies the name of the file to which the input has to be read .The fgets() function reads string from a file pointed by file pointer. It also copies the string to a memory location referred by an array.

	Declaration: fgets(char *str, int n, FILE *fptr);
	Ex: fgets(text,20,fp);

	
	
	

	/*program to understand the use of fputs()*/
	
	/*program to understand the use of

	
	
	fgets()*/

	#include<stdio.h>
	
	#include<stdio.h>

	void main()
	
	#include<conio.h>

	{
	
	void main()

	FILE *fp1;
	
	{

	char str[100];
	
	FILE *fp1;

	fp1=fopen("file.txt","w");
	
	char name[100];

	printf("enter the text\n");
	
	fp1=fopen("myfile.txt","r");

	if((gets(str)!=NULL))
	
	printf("enter the data");

	{
	
	while(fgets(name,80,fp1)!=NULL)

	fputs(str,fp1);
	
	{

	}
	
	puts(name);

	fclose(fp1);
	
	}

	getch();
	
	fclose(fp1);

	}
	
	getch(); }

3. Integer I/O

putw() functions: The fputw() function is used to write integer into file.

Declaration: int putw(int val, FILE *fp);
Ex: putw(val,fp);

It returns the integer written to the file on success and EOF on error.

getw() functions: The getw() function is used to read the integer from file.

Declaration: int getw(FILE *fp);
Ex: getw(fp);

This function return the integer value from the file associated with pointer fp. It returns the next integer from the input files on success and EOF on error.

	
	/*Ex Prog on the use of putw() getw()
	/*Prog to Read/Write using getc() putc()*/
	

	
	function*/
	#include<stdio.h>
	

	
	#include<stdio.h>
	void main()
	

	
	void main()
	{
	

	
	{
	file *fp1;
	

	
	FILE *fp1;
	char c;
	

	
	int a ;
	fp1=fopen("myfile.txt","w")
	

	
	fp1=fopen("one.dat","wb")
	while((c=getchar())!=EOF)
	

	
	for(int a=1; a<=10;a++)
	{
	

	
	{
	putc(c,fp1);
	

	
	putw(a,fp1); //write an integer into a file
	}
	

	
	}
	fclose(fp1);
	

	
	fclose(fp1) // close file
	fp1=fopen("myfile.txt","r")
	

	
	fp1=fopen("one.dat","rb");
	while((c=getc(fp1))!=EOF)
	

	
	while((a=getw(fp1)!=EOF))
	{
	

	
	printf("%d\t",a);
	printf("%c",c)
	

	
	fclose(fp1);
	}
	

	
	}
	fclose(fp1); }
	

6. Formatted I/O

1. fprintf() function

2. fscanf() function

fprintf() function: This function is used for writing characters, strings, integers, floats etc. to the text file. It contains one more parameter that is file pointer, which points to the opened file.

[image: image16.jpg]

[image: image17.jpg]

Declaration:
fprintf (FILE *fptr ,”format string”, argu1,argu2 argun);

Here fptr is a file pointer of type FILE structure. Each argument, if any, is converted and output according to the corresponding format specifier in the format string. The fprint() returns the number of characters printed. This function is similar to printf(), except that a FILE pointer is included as the first argument. The fprintf() works same as printf().

fscanf () function: fscanf function Reads data from the stream and this function is used for reads characters, strings, integers, floats etc. from the text file pointed by file pointer. It contains one more parameter that is file pointer, which points to the opened file.
[image: image18.jpg]

[image: image19.jpg]

Declaration: fscanf (FILE *fptr , “format string”, &argu1,&argu2 ….&argun]);

The fscanf function works exactly like the scanf function except that it reads the information from the file.

[image: image20.png]/7preg to understand the use of fprintf()=/
#include <stdio.h>

#include<ctype.h>

l(wﬁsl main()

FILE =fptr;

char namel2s];

it age;

float sal;

char. ch;

fotr = fopen("Emp.txt”, "w"); //Open
file if (fptr. == NULL)

{

printf("\nUnable to open a file.");
§m«n;

ch=
?IJ!@()

printf("\nEnter name
gets(name);
printf("Enter age :
scanf("%d", &age);

Printf("Enter salary : ");
scanf("%f", 8sal);

oDt (fpty, "%s %d %f", name, age,
sal); fflush(stdin);

PrNSE("\n Continue (y/n) : *);

9)1: tolower(getche()):

fclose(fptr); //close file

/% program to understand the use
of fscanff() =/

#include <stdio.h>

#include<canig,h>

#include<stdib,h>

l(wﬁsl main()

FILE =fp.;
m{ emp.

char. namel[50] ;

ik age ;

?g%&é;

stuctemp e ;

fp = fapen ("employee.txt”, "r")
i drser();

i(ﬁ(!n NULL)

Puts ("Cannot open file") ;

§m);

while (fscant (fp, "%s %d %f", e.name,
8e.age, Be.sal) = EOF)
prntf ("\n%s %d %f", e.name,

e.age, e.sal) ;

W(!n);

[image: image21.png]5.Record VO (o) Structures Read and Write

It is useful to store block of data into file rather than individual clements. Each block has
some fixed size; it may be structure and array. It is easy to read the entire block from a file or
write an entire block to the file. There are two useful functions for this purpose.

1. fwrite () function

2. fread () function
Although we can read and write any type of data varying from a single character to amray
through these function, these function are mainly used for binary files or binary modes.

frvrite () function: fivrite function is used for writing an entire structure block to a given file.

Declaration: size_t fivrite (const void *pir. size_t size, size_t count, FILE *stream) ;
Ex: fivite(&stud sizeof(stud). L fp):

size t s defined in stdioh -void means that it is a pointer that can be used for any type
variable. ptx is poiats to the block of memory that contaias the infommation to be written to
the file size denotes the length of cach items in bytes

n s the number of items to be written to the file . fptr s a file pointer which points to the file
to which the data is written if successful , fvrite will retum n items. On error it will retum a
mumber less than n.

fread() function: The fread(is a block oriented function and used for reading an entire
block from a given file. It provide as much control as fgetc() in the program, and has the
advantage of being able to read more than one character in a single 1O operation.

[image: image22.png][Dectaration: fread (ptr. size. n. fpm):
[Ex: fread(&emp sizeof(emp). o)

Here piy is the address of data item (an amay or a structure) where the block of data will be
stored after reading, size is the size of the data item in bytes to be read, n s the number of
data items and fpir is the file pointer of type FILE structure. The fread() function retums the
mumber of full data items actually read, which may be less than " (possibly 0) if function
causes any error

77 Receives records from keyboard and 77 program to understand the use of
writes them to 2 file in binary mode =/ fread() =/

#include<stdig.h> #include <stdig.h>

void main() void main()

{ {

FILE *fp ; FILE *fp ;

char another = 'Y' ; struct emp.

struct emp. {

{ char name[40] ;

char name[40] ; it age ;

int age ; floatbs ;

[image: image23.png]‘while (another)

<

Printf ("\nEnter. name, age & basic sal:");
scanf ("%s %d %f", e.name, &e,age,
8e.sal) ;

furite (S, sizeof (e), 1, fp);
printf ("Add another record (Y/N):
Flush (stdin) 5
another = getche() ;

by
felose (fp);
W();

while (fread (&e, sizeof (e), 1, fp.

{
printf ("\n%s %d %f", e.name, e.age,
ebs);

1

by
fclose (fp) ;
w();

Output:
Enter name, age & basic sal:
sanjana 26 29800
Add another record (Y/N):Y
Enter name, age & basic sal:
arghana 36 49800
Add another record (Y/N):N

sanjana 26 29800
archana 36 49800

Other File Functions:

· fseek() function

· ftell() function

· rewind() function

· ferror() function

· rename() function

· remove() or unlink() function

· feof() function

· fcloseall() function

fseek() function:

It is a file function. It positions file pointer on the stream. We can pass three arguments through this function.

7. File Pointer

8. –ve or +ve long integer number to reposition the file pointer towards the backward or forward direction.

9. The current position of the pointer.

Display the various values of location of file pointer.

	
	Integer Value
	Constant
	Location in the file
	

	
	
	
	
	

	
	0
	SEEK_SET
	Beginning of the file pointer.
	

	
	
	
	
	

	
	1
	SEEK_CUR
	Current position of the file pointer.
	

	
	
	
	
	

	
	2
	SEEK_END
	End of the file.
	

	
	
	
	
	

	/* Write a Program to read the text text
	/* Write a Program to read last few
	

	file containing some sentence. Use fseek()
	characters of the file using fseek()
	

	& read the text after skipping n characters
	statement. */
	

	from beginning of the file. */
	
	

	#include<stdio.h>
	
	#include<stdio.h>
	

	void main()
	
	void main()
	

	{
	
	{
	

	FILE *fp;
	
	FILE *fp;
	

	int n,ch;
	
	int n,ch;
	

	clrscr();
	
	clrscr();
	

	fp=fopen(“text.txt”,”r”);
	
	fp=fopen(“text.txt”,”r”);
	

	printf(“\n contents of file:\n”):
	printf(“\n contents of file:\n”):
	

	while((ch=fgetc(fp))!=eof)
	
	while((ch=fgetc(fp))!=eof)
	

	printf(“%c”,ch);
	
	printf(“%c”,ch);
	

	printf(“\n how many characters including
	printf(“\n how many characters including

	spaces would you like to skip:/n”);
	spaces would you like to skip:/n”);
	

	scanf(“%d”,&n);
	
	scanf(“%d”,&n);
	

	fseek(fp,n,seek_set); or fseek(fp,n,0);
	fseek(fp,n,seek_end); or fseek(fp,n,2);

	printf(“\n information after %d bytes \n”,n);
	printf(“\n information after %d bytes \n”,n);

	while((ch=fgetc(fp))!=eof)
	
	while((ch=fgetc(fp))!=eof)
	

	printf(“%c”,ch);
	
	printf(“%c”,ch);
	

	fclose(fp);
	
	fclose(fp);
	

	getch();
	
	getch();
	

	}
	
	}
	

	Output:
	
	Output:
	

	contents of file:
	
	contents of file:
	

	C PROGRAMMING LANGUAGE
	THE C PROGRAMMING LANGUAGE

	INVENTED BY DENNIS RITICHE
	INVENTED BY DENNIS RITICHE
	

	How many characters including spaces
	How many characters including spaces

	would you like to skip: 18
	
	would you like to skip: 18
	

	Information after 18 bytes
	
	Information after 18 bytes
	

	LANGUAGE INVENTED BY DENNIS
	
	

	RITICHE
	
	
	

ftell() function:

It is a file function. It returns the current position of the file pointer. It returns the pointer from the beginning of file.

	
	/* Write a program to print the current
	clrscr();
	

	
	position of the file pointer in the file using
	while(!feof(fp))
	

	
	ftell() function. */
	{
	

	
	#include<stdio.h>
	printf(“%c \t”,ch);
	

	
	void main()
	printf(“%d \n”,ftell(fp));
	

	
	{
	ch=fgetc(fp);
	

	
	FILE *fp;
	}
	

	
	char ch;
	fclose(fp);
	

	
	fp=fopen(“text.txt”,”r”);
	getch();
	

	
	fseek(fp,21,seek_set);
	}
	

	
	ch=fgetc(fp);
	
	

rewind() function:

This function resets the file pointer at the beginning of the file.

	
	while(!feof(fp))

	/* Write a program to show how rewind()
	{

	function works */
	c=fgetc(fp);

	
	printf("%c",c);

	#include<stdio.h>
	}

	#include<string.h>
	printf("\n After rewind()");

	void main()
	rewind(fp);

	{
	while(!feof(fp))

	FILE *fp;
	{

	char c;
	c=fgetc(fp);

	fp=fopen("file.txt","r");
	printf("%c",c);

	clrscr();
	}

	fseek(fp,12,SEEK_SET);
	getch();

	printf("Pointer is at %d \n",ftell(fp));
	}

	printf("\n Before rewind()");
	

rename() function:

This function changes the name of the given file. It is similar to rename command in dos..

unlink() or remove() function:

These functions delete the given file in the directory. It is similar to del command in dos.

	
	rename() function:
	unlink() or remove() function:
	

	
	#include<stdio.h>
	#include<stdio.h>
	

	
	void main()
	#include<dos.h>
	

	
	
	void main()
	

	
	
	
	

	
	{
	{
	

	
	
	FILE *fp;
	

	
	char old[15], new[15];
	char f[15];
	

	
	
	clrscr();
	

	
	clrscr();
	system(“dir*.txt”);
	

	
	
	printf(“enter the file name:\n”);
	

	
	system(“dir*.c /w”);
	scanf(“%s”,f);
	

	
	
	fp=fopen(f,”r”);
	

	
	printf(“enter old file name:\n”);
	if(fp==null)
	

	
	
	{
	

	
	scanf(“%s”,old);
	printf(“\n file does not exist:”);
	

	
	
	return;
	

	
	printf(“enter new file name:\n”);
	}
	

	
	
	else
	

	
	scanf(“%s”,new);
	{
	

	
	rename(old,new);
	remove(f);
	

	
	
	printf(“\n file (%s) has been deleted!”,f);
	

	
	
	
	

	
	system(“dir *.c /w”);
	}
	

	
	}
	getch();
	

	
	
	}
	

fcloseall() function:

This function closes all the opened files and returns number of files closed.

feof() function:

This function is used for detecting the file pointer whether it is at the end of file or not. It returns non-zero if the pointer is at the end of file, otherwise it returns zero.

	fcloseall() function
	feof() function

	#include<stdio.h>
	#include<stdio.h>

	void main()
	void main()

	{
	
	{

	FILE *ft,*fs;
	FILE *fp;

	int c=0;;
	
	char c;

	clrscr();
	
	clrscr();

	fs=fopen("a.txt","r");
	fp=fopen("file.txt","r");

	ft=fopen(“b.txt”,”w”);
	c=feof(fp);

	if(fs==NULL)
	printf(“File pointer at the beginning of

	{ printf(“\n Source file opening error:”);
	file:%d \n”,c);

	exit(1);
	}
	while(!feof(fp))

	else if(ft==NULL)
	{

	{ printf(“\n Target file opening error:”);
	printf("%c",c);

	exit(1);
	}
	c=fgetc(fp);

	while(!feof(fs))
	}

	{
	
	c=feof(fp);

	fputc(fgetc(fs),ft);
	printf(“File pointer at the end of file:%d

	c++;
	}
	\n”,c);

	printf(“\n %d bytes copied from „a.txt‟ to
	getch();

	„b.txt‟”,c);
	}

	c=fcloseall();
	

	printf(“\n %d files closed”,c);
	

	getch();
	}
	

ferror() function:

This function is used to find out error when file read write operations is carried out.

	
	/* Ex Program on ferror() function */
	printf("\n enter name \t arks\tpercentage\n");
	

	
	#include<stdio.h>
	scanf("%s%d%f",name,&marks,&p);
	

	
	void main()
	p=marks/7;
	

	
	{
	fprintf(fp,"%s%d%f",name,marks,p);
	

	
	FILE *fp;
	if(ferror(fp))
	

	
	char next='Y';
	{
	

	
	char name[25];
	printf("unable to read?");
	

	
	int marks;
	printf("\n file opening mode is incorrect:");
	

	
	float p;
	fclose(fp);
	

	
	fp=fopen("marks.bat","r");
	exit(1);
	

	
	if(fp==NULL)
	}
	

	
	{
	printf("\n Continue(Y/N)");
	

	
	printf("file cannot be displayed:");
	fflush(stdin);
	

	
	return;
	next=getche();
	

	
	}
	}
	

	
	while(next=='Y')
	fclose(fp);
	

	
	{
	getch(); }
	

LOW LEVEL DISK I/O:

In the low-level disk I/O disk operation data cannot be written as character by character or with sequence of character as it is carried in the high-level disk I/O functions. In the low-level disk I/O functions, buffers are used to carry the read and write operations.

Buffer plays an important role in the low-level disk I/O program. The programmer needs to declare an appropriate buffer size. The low-level disk I/O operations are more efficient and quick than the high-level disk I/O operations.

a. Opening a file:

To open a file or files open() function is used. This function is defined in “io.h”. Syntax: int open(const char *f_name, int access, unsigned mode)

If open() returns -1, it means that the file could not be opened otherwise the file is successfully opened.

File opening modes in the low level I/O operations:

	Mode
	Meaning

	O_APPEND
	Open a file in append mode

	O_WRONLY
	Creates a file for writing only

	O_RDONLY
	Opens a file for reading only

	O_RDWR
	Opens a file for read / write operations

	O_BINARY
	Opens a file in binary mode

	O_CREATE
	Opens a new file for writing

	O_EXCEL
	When used with O_CREATE, if file exist it

	
	is not overwritten.

	O_TEXT
	Creates a text file

When O_CREATE flag is used, it also requires one argument described to verify the read / write status of the file. These arguments are called as permission argument. The programmer needs to include the header file “stat.h” and “types.h” along with “fcntl.h”.

Permission argument:

	S_IWRITE
	Writing to the file allowed

	S_IREAD
	Reading from the file allowed

b. Writing a file: This function is used to write() data into the file. This function is defined in “io.h”.

Syntax: int write (int handle, void *buf, unsigned nbyte);

c. Reading a file: This function reads a file.

Syntax: int read (int handle, void *buf, unsigned len);

d. Closing a file: This function closes the file. This function is defined in “io.h”.

Syntax: int close (int handle);

e. Setting Buffer: The size of buffer can be set using setbuf() function. This function is defined in “stdio.h”.

Syntax:
void setbuf (FILE *fp, char *buffer);

MALLA REDDY ENGINEERING COLLEGE
Page 49

